【題目】在直角坐標(biāo)系中,曲線
的參數(shù)方程為
,(
為參數(shù)),以坐標(biāo)原點為極點,
軸的正半軸為極軸,建立極坐標(biāo)系,曲線
的極坐標(biāo)方程為
.
(1)寫出曲線的極坐標(biāo)方程和曲線
的直角坐標(biāo)方程;
(2)若射線與曲線
相交于點
,將
逆時針旋轉(zhuǎn)
后,與曲線
相交于點
,且
,求
的值.
【答案】(1);
(2)
【解析】
(1)消去曲線參數(shù)方程中的
,求得其普通方程,再根據(jù)極坐標(biāo)和直角坐標(biāo)轉(zhuǎn)化的公式,求得曲線
的極坐標(biāo)方程.利用極坐標(biāo)和直角坐標(biāo)轉(zhuǎn)化的公式,求得
的直角坐標(biāo)方程.
(2)將代入
的極坐標(biāo)方程,求得
的值,然后將
曲線
的極坐標(biāo)方程,求得
的值.根據(jù)
列方程,求得
的值,進(jìn)而求得
的大小.
(1)由曲線的參數(shù)方程為
,(
為參數(shù)),可得其普通方程
,
由,得曲線
的極坐標(biāo)方程
.
,
由,得曲線
的直角坐標(biāo)方程
.
(2)將代入
,
得.
將逆時針旋轉(zhuǎn)
,得
的極坐標(biāo)方程為
,代入曲線
的極坐標(biāo)方程,得
.
由,得
,
.
即,解得
.
因為,所以
.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知雙曲線的離心率為
,且焦點到漸近線的距離為
.
(1)求雙曲線的標(biāo)準(zhǔn)方程;
(2)若以為斜率的直線
與雙曲線
相交于兩個不同的點
,
,且線段
的垂直平分線與兩坐標(biāo)軸圍成的三角形的面積為
,求實數(shù)
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】△ABC的內(nèi)角A,B,C的對邊分別為a,b,c,已知△ABC的面積為
(1)求sinBsinC;
(2)若6cosBcosC=1,a=3,求△ABC的周長.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】“勾股定理”在西方被稱為“畢達(dá)哥拉斯定理”.三國時期,吳國的數(shù)學(xué)家趙爽創(chuàng)制了一幅“勾股圓方圖”,用數(shù)形結(jié)合的方法給出了勾股定理的詳細(xì)證明.如圖所示的“勾股圓方圖”中,四個相同的直角三角形與中間的小正方形拼成一個大正方形,若直角三角形中較小的銳角,現(xiàn)在向該正方形區(qū)域內(nèi)隨機地投擲100枚飛鏢,則估計飛鏢落在區(qū)域1的枚數(shù)最有可能是( )
A.30B.40C.50D.60
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=a1nx﹣ax+1(a∈R且a≠0).
(1)求函數(shù)f(x)的單調(diào)區(qū)間;
(2)求證:(n≥2,n∈N*).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在三棱柱中,側(cè)面
是為菱形,
在平面
內(nèi)的射影
恰為線段
的中點.
(1)求證:;
(2)若,
,求二面角
的平面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)定義在R上的函數(shù)f(x)是最小正周期為2π的偶函數(shù),f'(x)是f(x)的導(dǎo)函數(shù),當(dāng)x∈[0,π]時,0≤f(x)≤1;當(dāng)x∈(0,π)且x≠時,
,則函數(shù)y=f(x)-|sinx|在區(qū)間
上的零點個數(shù)為( )
A. 4 B. 6 C. 7 D. 8
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】從某大學(xué)中隨機選取7名女大學(xué)生,其身高x(單位:cm)和體重y(單位:kg)數(shù)據(jù)如下表:
編號 | 1 | 2 | 3 | 4 | 5 | 6 | 7 |
身高x | 163 | 164 | 165 | 166 | 167 | 168 | 169 |
體重y | 52 | 52 | 53 | 55 | 54 | 56 | 56 |
(1)求y關(guān)于x的回歸方程;
(2)利用(1)中的回歸方程,分析這7名女大學(xué)生的身高和體重的變化,并預(yù)報一名身高為172cm的女大學(xué)生的體重.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com