【題目】△ABC的內(nèi)角A,B,C的對(duì)邊分別為a,b,c,已知△ABC的面積為
(1)求sinBsinC;
(2)若6cosBcosC=1,a=3,求△ABC的周長(zhǎng).
【答案】(1).(2)
.
【解析】試題分析:(1)由三角形面積公式建立等式,再利用正弦定理將邊化成角,從而得出
的值;(2)由
和
計(jì)算出
,從而求出角
,根據(jù)題設(shè)和余弦定理可以求出
和
的值,從而求出
的周長(zhǎng)為
.
試題解析:(1)由題設(shè)得,即
.
由正弦定理得.
故.
(2)由題設(shè)及(1)得,即
.
所以,故
.
由題設(shè)得,即
.
由余弦定理得,即
,得
.
故的周長(zhǎng)為
.
點(diǎn)睛:在處理解三角形問(wèn)題時(shí),要注意抓住題目所給的條件,當(dāng)題設(shè)中給定三角形的面積,可以使用面積公式建立等式,再將所有邊的關(guān)系轉(zhuǎn)化為角的關(guān)系,有時(shí)需將角的關(guān)系轉(zhuǎn)化為邊的關(guān)系;解三角形問(wèn)題常見(jiàn)的一種考題是“已知一條邊的長(zhǎng)度和它所對(duì)的角,求面積或周長(zhǎng)的取值范圍”或者“已知一條邊的長(zhǎng)度和它所對(duì)的角,再有另外一個(gè)條件,求面積或周長(zhǎng)的值”,這類(lèi)問(wèn)題的通法思路是:全部轉(zhuǎn)化為角的關(guān)系,建立函數(shù)關(guān)系式,如,從而求出范圍,或利用余弦定理以及基本不等式求范圍;求具體的值直接利用余弦定理和給定條件即可.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)拋物線的焦點(diǎn)為
,過(guò)點(diǎn)
作垂直于
軸的直線與拋物線交于
,
兩點(diǎn),且以線段
為直徑的圓過(guò)點(diǎn)
.
(1)求拋物線的方程;
(2)若直線與拋物線
交于
,
兩點(diǎn),點(diǎn)
為曲線
:
上的動(dòng)點(diǎn),求
面積的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)的相鄰兩對(duì)稱(chēng)軸間的距離為
,若將
的圖像先向左平移
個(gè)單位,再向下平移
個(gè)單位,所得的函數(shù)
為奇函數(shù).
(1)求的解析式;
(2)若關(guān)于的方程
在區(qū)間
上有兩個(gè)不等實(shí)根,求實(shí)數(shù)
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】為了分析某個(gè)高三學(xué)生的學(xué)習(xí)狀態(tài),對(duì)其下一階段的學(xué)習(xí)提供指導(dǎo)性建議.現(xiàn)對(duì)他前7次考試的數(shù)學(xué)成績(jī)、物理成績(jī)
進(jìn)行分析.下面是該生7次考試的成績(jī).
數(shù)學(xué) | 88 | 83 | 117 | 92 | 108 | 100 | 112 |
物理 | 94 | 91 | 108 | 96 | 104 | 101 | 106 |
(1)他的數(shù)學(xué)成績(jī)與物理成績(jī)哪個(gè)更穩(wěn)定?請(qǐng)給出你的證明;
(2)已知該生的物理成績(jī)與數(shù)學(xué)成績(jī)
是線性相關(guān)的,若該生的物理成績(jī)達(dá)到115分,請(qǐng)你估計(jì)他的數(shù)學(xué)成績(jī)大約是多少?并請(qǐng)你根據(jù)物理成績(jī)與數(shù)學(xué)成績(jī)的相關(guān)性,給出該生在學(xué)習(xí)數(shù)學(xué)、物理上的合理建議.
參考公式:方差公式:,其中
為樣本平均數(shù).
,
。
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】交通指數(shù)是交通擁堵指數(shù)的簡(jiǎn)稱(chēng),是綜合反映道路網(wǎng)暢通或擁堵的概念,記交通指數(shù)為,其范圍為
,分為五個(gè)級(jí)別,
暢通;
基本暢通;
輕度擁堵;
中度擁堵;
嚴(yán)重?fù)矶?早高峰時(shí)段(
),從某市交通指揮中心隨機(jī)選取了三環(huán)以內(nèi)的50個(gè)交通路段,依據(jù)其交通指數(shù)數(shù)據(jù)繪制的頻率分布直方圖如圖.
(1)這50個(gè)路段為中度擁堵的有多少個(gè)?
(2)據(jù)此估計(jì),早高峰三環(huán)以內(nèi)的三個(gè)路段至少有一個(gè)是嚴(yán)重?fù)矶碌母怕适嵌嗌伲?/span>
(3)某人上班路上所用時(shí)間若暢通時(shí)為20分鐘,基本暢通為30分鐘,輕度擁堵為36分鐘,中度擁堵為42分鐘,嚴(yán)重?fù)矶聻?0分鐘,求此人所用時(shí)間的數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某學(xué)校運(yùn)動(dòng)會(huì)的立定跳遠(yuǎn)和30秒跳繩兩個(gè)單項(xiàng)比賽分成預(yù)賽和決賽兩個(gè)階段.下表為10名學(xué)生的預(yù)賽成績(jī),其中有三個(gè)數(shù)據(jù)模糊.
學(xué)生序號(hào) | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
立定跳遠(yuǎn)(單位:米) | 1.96 | 1.92 | 1.82 | 1.80 | 1.78 | 1.76 | 1.74 | 1.72 | 1.68 | 1.60 |
30秒跳繩(單位:次) | 63 | a | 75 | 60 | 63 | 72 | 70 | a1 | b | 65 |
在這10名學(xué)生中,進(jìn)入立定跳遠(yuǎn)決賽的有8人,同時(shí)進(jìn)入立定跳遠(yuǎn)決賽和30秒跳繩決賽的有6人,則
(A)2號(hào)學(xué)生進(jìn)入30秒跳繩決賽
(B)5號(hào)學(xué)生進(jìn)入30秒跳繩決賽
(C)8號(hào)學(xué)生進(jìn)入30秒跳繩決賽
(D)9號(hào)學(xué)生進(jìn)入30秒跳繩決賽
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】這是今年雙十一的兩道題目,第一題是雙十一之前網(wǎng)上流傳甚廣的小明買(mǎi)衛(wèi)衣問(wèn)題,第二題是有關(guān)某老師的雙十一戰(zhàn)果.
(1)小明想在雙十一買(mǎi)價(jià)值399的衛(wèi)衣,已知付定金20元有訂金三倍膨脹活動(dòng),但僅限當(dāng)天0到2點(diǎn),2點(diǎn)以后訂金可抵用50元,但有付尾款前500名免定金活動(dòng),同時(shí)該店鋪有399減20和299減10的優(yōu)惠券(其使用門(mén)檻是訂金尾款
訂金膨脹優(yōu)惠金額大于等于優(yōu)惠券),還有一種379減20和279減10的折扣券(其使用門(mén)檻是尾款
膨脹優(yōu)惠金額大于等于折扣券面額),優(yōu)惠和折扣只能選一種,求小明最低多少錢(qián)能買(mǎi)到這件衛(wèi)衣?如果你是小明,你會(huì)選擇怎樣購(gòu)買(mǎi)?
(2)某老師在雙十一前花1元,搶到了某商家滿的一張優(yōu)惠券,該商家沒(méi)有訂金膨脹活動(dòng),但該商家有多買(mǎi)多優(yōu)惠活動(dòng):滿3件9折,5件8折,10件及以上7折,同時(shí)可用淘寶
的購(gòu)物津貼(可跨店滿減,店鋪優(yōu)惠后參加該活動(dòng),但運(yùn)費(fèi)不在其中),現(xiàn)已知該老師本單共花了
元(1是買(mǎi)券錢(qián),119.78是雙十一付款,其中含運(yùn)費(fèi)6元).
請(qǐng)問(wèn):該老師本次購(gòu)買(mǎi)的商品價(jià)值最低多少?最高多少?(按商家標(biāo)示的淘寶價(jià)格計(jì)算,精確到元即可,已知該老師用了券)
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在四棱錐中,底面
是菱形,
,
為等邊三角形,
是線段
上的一點(diǎn),且
平面
.
(1)求證:為
的中點(diǎn);
(2)若為
的中點(diǎn),連接
,
,
,
,平面
平面
,
,求三棱錐
的體積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知拋物線的焦點(diǎn)也是橢圓
的一個(gè)焦點(diǎn),點(diǎn)
在橢圓短軸
上,且
.
(1)求橢圓的方程;
(2)設(shè)為橢圓
上的一個(gè)不在
軸上的動(dòng)點(diǎn),
為坐標(biāo)原點(diǎn),過(guò)橢圓的右焦點(diǎn)
作
的平行線,交曲線
于
兩點(diǎn),求
面積的最大值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com