【題目】“勾股定理”在西方被稱為“畢達(dá)哥拉斯定理”.三國時期,吳國的數(shù)學(xué)家趙爽創(chuàng)制了一幅“勾股圓方圖”,用數(shù)形結(jié)合的方法給出了勾股定理的詳細(xì)證明.如圖所示的“勾股圓方圖”中,四個相同的直角三角形與中間的小正方形拼成一個大正方形,若直角三角形中較小的銳角,現(xiàn)在向該正方形區(qū)域內(nèi)隨機(jī)地投擲100枚飛鏢,則估計(jì)飛鏢落在區(qū)域1的枚數(shù)最有可能是( )
A.30B.40C.50D.60
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】(本小題滿分13分)某縣一個化肥廠生產(chǎn)甲、乙兩種混合肥料,生產(chǎn)1車皮甲種肥料的主要原料是磷酸鹽4噸、硝酸鹽18噸;生產(chǎn)1車皮乙種肥料需要的主要原料是磷酸鹽1噸、硝酸鹽15噸.先庫存磷酸鹽10噸、硝酸鹽66噸,在此基礎(chǔ)上生產(chǎn)這兩種混合肥料.若生產(chǎn)1車皮甲種肥料產(chǎn)生的利潤為10000元;生產(chǎn)1車皮乙種肥料產(chǎn)生的利潤為5000元.那么分別生產(chǎn)甲、乙兩種肥料各多少車皮能產(chǎn)生最大的利潤?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知,
為橢圓
上的兩點(diǎn),滿足
,其中
,
分別為左右焦點(diǎn).
(1)求的最小值;
(2)若,設(shè)直線
的斜率為
,求
的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】秦九韶是我國南宋時期的數(shù)學(xué)家,普州(現(xiàn)四川省安岳縣)人,他在所著的《數(shù)書九章》中提出的多項(xiàng)式求值的秦九韶算法,至今仍是比較先進(jìn)的算法.如圖所示的程序框圖給出了利用秦九韶算法求某多項(xiàng)式值的一個實(shí)例,若輸入,
的值分別為5,2,則輸出
的值為( )
A.64B.68C.72D.133
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知關(guān)于x的不等式的解集中的整數(shù)解恰好有三個,則實(shí)數(shù)a的取值范圍是______.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】十二生肖是十二地支的形象化代表,即子(鼠)、丑(牛)、寅(虎)、卯(兔)、辰(龍)、巳(蛇)、午(馬)、未(羊)、申(猴)、酉(雞)、戌(狗)、亥(豬),每一個人的出生年份對應(yīng)了十二種動物中的一種,即自己的屬相.現(xiàn)有印著六種不同生肖圖案(包含馬、羊)的毛絨娃娃各一個,小張同學(xué)的屬相為馬,小李同學(xué)的屬相為羊,現(xiàn)在這兩位同學(xué)從這六個毛絨娃娃中各隨機(jī)取一個(不放回),則這兩位同學(xué)都拿到自己屬相的毛絨娃娃的概率是( )
A.B.
C.
D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在直角坐標(biāo)系中,曲線
的參數(shù)方程為
,(
為參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn),
軸的正半軸為極軸,建立極坐標(biāo)系,曲線
的極坐標(biāo)方程為
.
(1)寫出曲線的極坐標(biāo)方程和曲線
的直角坐標(biāo)方程;
(2)若射線與曲線
相交于點(diǎn)
,將
逆時針旋轉(zhuǎn)
后,與曲線
相交于點(diǎn)
,且
,求
的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平行四邊形中,
,
,沿對角線
將
折起,使點(diǎn)
到達(dá)平面
外的點(diǎn)
的位置,
(1)求證:平面平面
;
(2)當(dāng)平面平面
時,求三棱錐
的外接球的體積;
(3)當(dāng)為等腰三角形時,求二面角
的大小.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖①,在直角梯形中,
,
,
,點(diǎn)
是
邊的中點(diǎn),將
沿
折起,使平面
平面
,連接
,
,
,得到如圖②所示的幾何體.
(1)求證:平面
;
(2)若,二面角
的平面角的正切值為
,求二面角
的余弦值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com