科目: 來源: 題型:
【題目】為了解網(wǎng)絡(luò)外賣的發(fā)展情況,某調(diào)查機(jī)構(gòu)從全國各城市中抽取了100個(gè)相同等級(jí)地城市,分別調(diào)查了甲乙兩家網(wǎng)絡(luò)外賣平臺(tái)(以下簡稱外賣甲、外賣乙)在今年3月的訂單情況,得到外賣甲該月訂單的頻率分布直方圖,外賣乙該月訂單的頻數(shù)分布表,如下圖表所示.
訂單:(單位:萬件) |
| |||||||
頻數(shù) | 1 | 2 | 2 | 3 | ||||
訂單:(單位:萬件) | ||||||||
頻數(shù) | 40 | 20 | 20 | 10 | 2 | |||
(1)現(xiàn)規(guī)定,月訂單不低于13萬件的城市為“業(yè)績突出城市”,填寫下面的列聯(lián)表,并根據(jù)列聯(lián)表判斷是否有90%的把握認(rèn)為“是否為業(yè)績突出城市”與“選擇網(wǎng)絡(luò)外賣平臺(tái)”有關(guān).
業(yè)績突出城市 | 業(yè)績不突出城市 | 總計(jì) | |
外賣甲 | |||
外賣乙 | |||
總計(jì) |
(2)由頻率分布直方圖可以認(rèn)為,外賣甲今年3月在全國各城市的訂單數(shù)(單位:萬件)近似地服從正態(tài)分布
,其中
近似為樣本平均數(shù)
(同一組數(shù)據(jù)用該區(qū)間的中點(diǎn)值作代表),
的值已求出,約為3.64,現(xiàn)把頻率視為概率,解決下列問題:
①從全國各城市中隨機(jī)抽取6個(gè)城市,記為外賣甲在今年3月訂單數(shù)位于區(qū)間
的城市個(gè)數(shù),求
的數(shù)學(xué)期望;
②外賣甲決定在今年3月訂單數(shù)低于7萬件的城市開展“訂外賣,搶紅包”的營銷活動(dòng)來提升業(yè)績,據(jù)統(tǒng)計(jì),開展此活動(dòng)后城市每月外賣訂單數(shù)將提高到平均每月9萬件的水平,現(xiàn)從全國各月訂單數(shù)不超過7萬件的城市中采用分層抽樣的方法選出100個(gè)城市不開展?fàn)I銷活動(dòng),若每按一件外賣訂單平均可獲純利潤5元,但每件外賣平均需送出紅包2元,則外賣甲在這100個(gè)城市中開展?fàn)I銷活動(dòng)將比不開展?fàn)I銷活動(dòng)每月多盈利多少萬元?
附:①參考公式:,其中
.
參考數(shù)據(jù):
0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.001 | |
2.702 | 2.706 | 3.841 | 5.024 | 6.635 | 10.828 |
②若,則
,
.
查看答案和解析>>
科目: 來源: 題型:
【題目】“回文數(shù)”是指從左到右與從右到左讀都一樣的正整數(shù),如22,121,3553等.顯然2位“回文數(shù)”共9個(gè):11,22,33,…,99.現(xiàn)從9個(gè)不同2位“回文數(shù)”中任取1個(gè)乘以4,其結(jié)果記為X;從9個(gè)不同2位“回文數(shù)”中任取2個(gè)相加,其結(jié)果記為Y.
(1)求X為“回文數(shù)”的概率;
(2)設(shè)隨機(jī)變量表示X,Y兩數(shù)中“回文數(shù)”的個(gè)數(shù),求
的概率分布和數(shù)學(xué)期望
.
查看答案和解析>>
科目: 來源: 題型:
【題目】數(shù)列是公差為d(
)的等差數(shù)列,它的前n項(xiàng)和記為
,數(shù)列
是公比為q(
)的等比數(shù)列,它的前n項(xiàng)和記為
.若
,且存在不小于3的正整數(shù)
,使
.
(1)若,求
.
(2)若試比較
與
的大小,并說明理由;
(3)若,是否存在整數(shù)m,k,使
若存在,求出m,k的值;若不存在,說明理由.
查看答案和解析>>
科目: 來源: 題型:
【題目】.(本小題滿分16分)
已知函數(shù),并設(shè)
,
(1)若圖像在
處的切線方程為
,求
、
的值;
(2)若函數(shù)是
上單調(diào)遞減,則
① 當(dāng)時(shí),試判斷
與
的大小關(guān)系,并證明之;
② 對(duì)滿足題設(shè)條件的任意、
,不等式
恒成立,求
的取值范圍
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,墻上有一壁畫,最高點(diǎn)離地面4米,最低點(diǎn)
離地面2米,觀察者從距離墻
米,離地面高
米的
處觀賞該壁畫,設(shè)觀賞視角
(1)若問:觀察者離墻多遠(yuǎn)時(shí),視角
最大?
(2)若當(dāng)
變化時(shí),求
的取值范圍.
查看答案和解析>>
科目: 來源: 題型:
【題目】已知橢圓C:+
=1(a>b>0)的兩個(gè)焦點(diǎn)分別為F1(﹣2,0),F(xiàn)2(2,0),離心率為
.過焦點(diǎn)F2的直線l(斜率不為0)與橢圓C交于A,B兩點(diǎn),線段AB的中點(diǎn)為D,O為坐標(biāo)原點(diǎn),直線OD交橢圓于M,N兩點(diǎn).
(Ⅰ)求橢圓C的方程;
(Ⅱ)當(dāng)四邊形MF1NF2為矩形時(shí),求直線l的方程.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com