【題目】某學(xué)校運動會的立定跳遠和30秒跳繩兩個單項比賽分成預(yù)賽和決賽兩個階段.下表為10名學(xué)生的預(yù)賽成績,其中有三個數(shù)據(jù)模糊.
學(xué)生序號 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
立定跳遠(單位:米) | 1.96 | 1.92 | 1.82 | 1.80 | 1.78 | 1.76 | 1.74 | 1.72 | 1.68 | 1.60 |
30秒跳繩(單位:次) | 63 | a | 75 | 60 | 63 | 72 | 70 | a1 | b | 65 |
在這10名學(xué)生中,進入立定跳遠決賽的有8人,同時進入立定跳遠決賽和30秒跳繩決賽的有6人,則
(A)2號學(xué)生進入30秒跳繩決賽
(B)5號學(xué)生進入30秒跳繩決賽
(C)8號學(xué)生進入30秒跳繩決賽
(D)9號學(xué)生進入30秒跳繩決賽
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在Rt中,
,點
、
分別在線段
、
上,且
,將
沿
折起到
的位置,使得二面角
的大小為
.
(1)求證:;
(2)當點為線段
的靠近
點的三等分點時,求
與平面
所成角
的正弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓的長軸長是短軸長的
倍,且過點
.
(1)求橢圓的標準方程;
(2)若的頂點
、
在橢圓上,
所在的直線斜率為
,
所在的直線斜率為
,若
,求
的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)當時,求
的最小值;
(2)若在
上為單調(diào)函數(shù),求實數(shù)
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】為了解某地區(qū)某種農(nóng)產(chǎn)品的年產(chǎn)量x(單位:噸)對價格y(單位:千元/噸)和利潤z的影響,對近五年該農(nóng)產(chǎn)品的年產(chǎn)量和價格統(tǒng)計如下表:
x | 1 | 2 | 3 | 4 | 5 |
y | 7.0 | 6.5 | 5.5 | 3.8 | 2.2 |
(1)求y關(guān)于x的線性回歸方程;
(2)若每噸該農(nóng)產(chǎn)品的成本為2千元,假設(shè)該農(nóng)產(chǎn)品可全部賣出,預(yù)測當年產(chǎn)量為多少時,年利潤z取到最大值?(保留兩位小數(shù))
參考公式: ,
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖所示的矩形中,
,點
為
邊上異于
,
兩點的動點,且
,
為線段
的中點,現(xiàn)沿
將四邊形
折起,使得
與
的夾角為
,連接
,
.
(1)探究:在線段上是否存在一點
,使得
平面
,若存在,說明點
的位置,若不存在,請說明理由;
(2)求三棱錐的體積的最大值,并計算此時
的長度.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知點,點
是圓
上任意一點,線段
的垂直平分線與半徑
交于
點,當點
在圓
上運動時,
(1)求點的軌跡
的方程;
(2)過作直線
與曲線
相交于
兩點,
為坐標原點,求
面積的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(Ⅰ)若函數(shù)在定義域上是增函數(shù),求實數(shù)
的取值范圍;
(Ⅱ)若,令
,試討論函數(shù)
的零點個數(shù),并說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com