【題目】如圖,四棱錐中,
,
,
,
,且
.
(1)求證:平面平面
;
(2)求點到平面
的距離.
【答案】(1)證明見解析(2)
【解析】
(1)由線面垂直的判定定理證明平面
,由線面垂直的性質(zhì)定理可得
,由線面垂直的判定定理得
平面
,再由面面垂直的判定定理證明平面
平面
即可.
(2)由,利用等體積法,即可求出點
到平面
的距離.
(1)解:取、
的中點分別為
、
,連結(jié)
,
,
,
因為,
,
所以四邊形為梯形,
又、
為
、
的中點,
所以為梯形的中位線,
所以,
又,
所以,
因為,
為
的中點
所以,
又,
平面
,
平面
,
所以平面
,
又平面
,
故,
因為,
為
中點,
所以,
又,
不平行,必相交于某一點,且
,
都在平面
上,
所以平面
,
又平面
,
則平面平面
.
(2)由(1)及題意知,為三棱錐
的高,
,
,
,
故,
,
而,
設(shè)點到平面
的距離為
,
由等體積法知:,
解得,
所以點到平面
的距離為
.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù).
(1)當(dāng)(
為自然對數(shù)的底數(shù))時,求
的最小值;
(2)討論函數(shù)零點的個數(shù);
(3)若對任意恒成立,求
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知△ABC的兩個頂點A,B的坐標(biāo)分別為(,0),(
,0),圓E是△ABC的內(nèi)切圓,在邊AC,BC,AB上的切點分別為P,Q,R,|CP|=2
,動點C的軌跡為曲線G.
(1)求曲線G的方程;
(2)設(shè)直線l與曲線G交于M,N兩點,點D在曲線G上,是坐標(biāo)原點
,判斷四邊形OMDN的面積是否為定值?若為定值,求出該定值;如果不是,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知直線與橢圓
交于不同的兩點
,
.
(1)若線段的中點為
,求直線
的方程;
(2)若的斜率為
,且
過橢圓
的左焦點
,
的垂直平分線與
軸交于點
,求證:
為定值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓,
、
為橢圓的左、右焦點,
為橢圓上一點,且
.
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)設(shè)直線,過點
的直線交橢圓于
、
兩點,線段
的垂直平分線分別交直線
、直線
于
、
兩點,當(dāng)
最小時,求直線
的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,三棱柱中,
側(cè)面
,已知
,
,
,點
是棱
的中點.
(1)求證:平面
;
(2)求二面角的余弦值;
(3)在棱上是否存在一點
,使得
與平面
所成角的正弦值為
,若存在,求出
的值;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線L:(
)的焦點為F,過點
的動直線l與拋物線L交于A,B兩點,直線
交拋物線L于另一點C,直線
的最小值為4.
(1)求橢圓C的方程;
(2)若過點A作y軸的垂線m,則x軸上是否存在一點,使得直線PB與直線m的交點恒在一條定直線上?若存在,求該點的坐標(biāo)及該定直線的方程;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某企業(yè)有甲、乙兩套設(shè)備生產(chǎn)同一種產(chǎn)品,為了檢測兩套設(shè)備的生產(chǎn)質(zhì)量情況,隨機從兩套設(shè)備生產(chǎn)的大量產(chǎn)品中各抽取了50件產(chǎn)品作為樣本,檢測一項質(zhì)量指標(biāo)值,若該項質(zhì)量指標(biāo)值落在內(nèi),則為合格品,否則為不合格品. 表1是甲套設(shè)備的樣本的頻數(shù)分布表,圖1是乙套設(shè)備的樣本的頻率分布直方圖.
表1:甲套設(shè)備的樣本的頻數(shù)分布表
質(zhì)量指標(biāo)值 | [95,100) | [100,105) | [105,110) | [110,115) | [115,120) | [120,125] |
頻數(shù) | 1 | 5 | 18 | 19 | 6 | 1 |
圖1:乙套設(shè)備的樣本的頻率分布直方圖
(Ⅰ)將頻率視為概率. 若乙套設(shè)備生產(chǎn)了5000件產(chǎn)品,則其中的不合格品約有多少件;
(Ⅱ)填寫下面列聯(lián)表,并根據(jù)列聯(lián)表判斷是否有90%的把握認(rèn)為該企業(yè)生產(chǎn)的這種產(chǎn)品的質(zhì)量指標(biāo)值與甲、乙兩套設(shè)備的選擇有關(guān);
甲套設(shè)備 | 乙套設(shè)備 | 合計 | |
合格品 | |||
不合格品 | |||
合計 |
(Ⅲ)根據(jù)表1和圖1,對兩套設(shè)備的優(yōu)劣進行比較.
附:
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】選修4 — 4:坐標(biāo)系與參數(shù)方程
在直角坐標(biāo)系中,直線
的參數(shù)方程為
(
為參數(shù)),以原點為極點,
軸的正半軸為極軸建立極坐標(biāo)系,曲線
的極坐標(biāo)方程為
(
).
(1)分別寫出直線的普通方程與曲線
的直角坐標(biāo)方程;
(2)已知點,直線
與曲線
相交于
兩點,若
,求
的值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com