【題目】已知件次品和
件正品混放在一起,現(xiàn)需要通過檢測(cè)將其區(qū)分,每次隨機(jī)檢測(cè)一件產(chǎn)品,檢測(cè)后不放回,直到檢測(cè)出
件次品或者檢測(cè)出
件正品時(shí)檢測(cè)結(jié)束.
(1)求第一次檢測(cè)出的是次品且第二次檢測(cè)出的是正品的概率;
(2)已知每檢測(cè)一件產(chǎn)品需要費(fèi)用元,設(shè)
表示直到檢測(cè)出
件次品或者檢測(cè)出
件正品時(shí)所需要的檢測(cè)費(fèi)用(單位:元),求
的分布列.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在正四棱錐中,底面正方形的對(duì)角線
交于點(diǎn)
且
(1)求直線與平面
所成角的正弦值;
(2)求銳二面角的大。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)(
,
).
(1)當(dāng)(e為自然對(duì)數(shù)的底數(shù))時(shí),
(i)若在
上恰有兩個(gè)不同的零點(diǎn),求實(shí)數(shù)m的取值范圍;
(ii)若(
),求
在
上的最大值;
(2)當(dāng)時(shí),
,
,數(shù)列
滿足
.求證:
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)拋物線C:y2=2px(p>0)的焦點(diǎn)為F,準(zhǔn)線為l,AB為過焦點(diǎn)F且垂直于x軸的拋物線C的弦,已知以AB為直徑的圓經(jīng)過點(diǎn)(-1,0).
(1)求p的值及該圓的方程;
(2)設(shè)M為l上任意一點(diǎn),過點(diǎn)M作C的切線,切點(diǎn)為N,證明:MF⊥NF.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)(
,
是自然對(duì)數(shù)的底數(shù))
(Ⅰ) 設(shè)(其中
是
的導(dǎo)數(shù)),求
的極小值;
(Ⅱ) 若對(duì),都有
成立,求實(shí)數(shù)
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓的離心率為
,左、右焦點(diǎn)分別為
,
,
為橢圓C上一點(diǎn).
(1)求橢圓C的方程;
(2)設(shè)橢圓C的左、右頂點(diǎn)分別為,
,過
,
分別作x軸的垂線
,
,橢圓C的一條切線
與
,
交于M,N兩點(diǎn),求證:
是定值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知直線:
與拋物線
切于點(diǎn)
,直線
:
過定點(diǎn)Q,且拋物線
上的點(diǎn)到點(diǎn)Q的距離與其到準(zhǔn)線距離之和的最小值為
.
(1)求拋物線的方程及點(diǎn)
的坐標(biāo);
(2)設(shè)直線與拋物線
交于(異于點(diǎn)P)兩個(gè)不同的點(diǎn)A、B,直線PA,PB的斜率分別為
,那么是否存在實(shí)數(shù)
,使得
?若存在,求出
的值;若不存在,請(qǐng)說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓,離心率為
,直線
恒過
的一個(gè)焦點(diǎn)
.
(1)求的標(biāo)準(zhǔn)方程;
(2)設(shè)為坐標(biāo)原點(diǎn),四邊形
的頂點(diǎn)均在
上,
交于
,且
,若直線
的傾斜角的余弦值為
,求直線
與
軸交點(diǎn)的坐標(biāo).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com