【題目】如圖所示,在頂角為圓錐內(nèi)有一截面,在圓錐內(nèi)放半徑分別為
的兩個球與圓錐的側(cè)面、截面相切,兩個球分別與截面相切于
,則截面所表示的橢圓的離心率為( )
(注:在截口曲線上任取一點,過
作圓錐的母線,分別與兩個球相切于點
,由相切的幾何性質(zhì)可知,
,
,于是
,為橢圓的幾何意義)
A.B.
C.
D.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】若拋物線的焦點為
,
是坐標原點,
為拋物線上的一點,向量
與
軸正方向的夾角為60°,且
的面積為
.
(1)求拋物線的方程;
(2)若拋物線的準線與
軸交于點
,點
在拋物線
上,求當(dāng)
取得最大值時,直線
的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知點,
,拋物線
的焦點
為線段
中點.
(1)求拋物線的方程;
(2)過點的直線交拋物線
于
兩點,
,過點
作拋物線
的切線
,
為切線
上的點,且
軸,求
面積的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】2019冠狀病毒病(CoronaVirus Disease2019(COVID-19))是由新型冠狀病毒(2019-nCoV)引發(fā)的疾病,目前全球感染者以百萬計,我國在黨中央、國務(wù)院、中央軍委的堅強領(lǐng)導(dǎo)下,已經(jīng)率先控制住疫情,但目前疫情防控形勢依然嚴峻,湖北省中小學(xué)依然延期開學(xué),所有學(xué)生按照停課不停學(xué)的要求,居家學(xué)習(xí).小李同學(xué)在居家學(xué)習(xí)期間,從網(wǎng)上購買了一套高考數(shù)學(xué)沖刺模擬試卷,快遞員計劃在下午4:00~5:00之間送貨到小區(qū)門口的快遞柜中,小李同學(xué)父親參加防疫志愿服務(wù),按規(guī)定,他換班回家的時間在下午4:30~5:00,則小李父親收到試卷無需等待的概率為( )
A.B.
C.
D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知正方體的棱長為1,P是空間中任意一點,下列正確命題的個數(shù)是( )
①若P為棱中點,則異面直線AP與CD所成角的正切值為
;
②若P在線段上運動,則
的最小值為
;
③若P在半圓弧CD上運動,當(dāng)三棱錐的體積最大時,三棱錐
外接球的表面積為
;
④若過點P的平面與正方體每條棱所成角相等,則
截此正方體所得截面面積的最大值為
A.1個B.2個C.3個D.4個
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標系中,橢圓
的方程為
,且直線
與以原點為圓心,橢圓
短軸長為直徑的圓相切.
(1)求的值;
(2)若橢圓左右頂點分別為
,過點
作直線
與橢圓交于
兩點,且
位于第一象限,
在線段
上.
①若和
的面積分別為
,問是否存在這樣的直線
使得
?請說明理由;
②直線與直線
交于點
,連結(jié)
,記直線
的斜率分別為
,求證:
為定值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某景點共有999級臺階,寓意長長久久.游客甲上臺階時,可以一步走一個臺階,也可以一步走兩個臺階,無其它可能.若甲每步上一個臺階的概率為,每步上兩個臺階的概率也為
.為了簡便描述問題,我們約定,甲從0級臺階開始向上走,一步走一個臺階記1分,一步走兩個臺階記2分,記甲登上第
個臺階的概率為
,其中
,且
.
(1)甲走3步時所得分數(shù)為,求
的分布列和數(shù)學(xué)期望;
(2)證明:當(dāng),且
時,數(shù)列
是等比數(shù)列,并求甲登上第100級臺階的概率
.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com