【題目】在平面直角坐標(biāo)系中,直線
的參數(shù)方程為
(
為參數(shù))。在極坐標(biāo)系(與直角坐標(biāo)系
取相同的長度單位,且以原點
為極點,以
軸正半軸為極軸)中,圓
的極坐標(biāo)方程為
。
(1)求直線的普通方程和圓
的直角坐標(biāo)方程;
(2)設(shè)圓與直線
交于
,
兩點,若點
的坐標(biāo)為
,求
。
【答案】(1)直線l的普通方程為;圓C的直角坐標(biāo)方程為
;(2)
.
【解析】
(1)由直線的參數(shù)方程消去參數(shù)可直接得到普通方程;由極坐標(biāo)與直角坐標(biāo)的互化公式,可直接得到圓的直角坐標(biāo)方程;
(2)將直線參數(shù)方程代入圓的直角坐標(biāo)方程,結(jié)合韋達(dá)定理,根據(jù)參數(shù)的方法,即可求出結(jié)果.
(1)由直線的參數(shù)方程
(
為參數(shù))得直線
的普通方程為
由,得
,即圓
的直角坐標(biāo)方程為
。
(2)將直線的參數(shù)方程代入圓
的直角坐標(biāo)方程,得
,
即,
由于>0,
故可設(shè),
是上述方程的兩個實根,
所以
又直線過點P(3,
),
故。
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)橢圓:
的左、右焦點分別為
,
,下頂點為
,橢圓
的離心率是
,
的面積是
.
(1)求橢圓的標(biāo)準(zhǔn)方程.
(2)直線與橢圓
交于
,
兩點(異于
點),若直線
與直線
的斜率之和為1,證明:直線
恒過定點,并求出該定點的坐標(biāo).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓的中心在原點,焦點在
軸,焦距為2,且長軸長是短軸長的
倍.
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)設(shè),過橢圓
左焦點
的直線
交
于
、
兩點,若對滿足條件的任意直線
,不等式
(
)恒成立,求
的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某大型工廠有臺大型機器,在
個月中,
臺機器至多出現(xiàn)
次故障,且每臺機器是否出現(xiàn)故障是相互獨立的,出現(xiàn)故障時需
名工人進行維修.每臺機器出現(xiàn)故障的概率為
.已知
名工人每月只有維修
臺機器的能力,每臺機器不出現(xiàn)故障或出現(xiàn)故障時有工人維修,就能使該廠獲得
萬元的利潤,否則將虧損
萬元.該工廠每月需支付給每名維修工人
萬元的工資.
(1)若每臺機器在當(dāng)月不出現(xiàn)故障或出現(xiàn)故障時有工人進行維修,則稱工廠能正常運行.若該廠只有名維修工人,求工廠每月能正常運行的概率;
(2)已知該廠現(xiàn)有名維修工人.
(。┯浽搹S每月獲利為萬元,求
的分布列與數(shù)學(xué)期望;
(ⅱ)以工廠每月獲利的數(shù)學(xué)期望為決策依據(jù),試問該廠是否應(yīng)再招聘名維修工人?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖都是由邊長為1的正方體疊成的幾何體,例如第(1)個幾何體的表面積為6個平方單位,第(2)個幾何體的表面積為18個平方單位,第(3)個幾何體的表面積是36個平方單位.依此規(guī)律,則第個幾何體的表面積是__________個平方單位.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,直線
的參數(shù)方程為
(
為參數(shù))。在極坐標(biāo)系(與直角坐標(biāo)系
取相同的長度單位,且以原點
為極點,以
軸正半軸為極軸)中,圓
的極坐標(biāo)方程為
。
(1)求直線的普通方程和圓
的直角坐標(biāo)方程;
(2)設(shè)圓與直線
交于
,
兩點,若點
的坐標(biāo)為
,求
。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)為下述正整數(shù)
的個數(shù):
的各位數(shù)字之和為
,且每位數(shù)字只能取
,
或
(1)求,
,
,
的值;
(2)對,試探究
與
的大小關(guān)系,并加以證明.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】一批產(chǎn)品需要進行質(zhì)量檢驗,檢驗方案是:先從這批產(chǎn)品中任取4件作檢驗,這4件產(chǎn)品中優(yōu)質(zhì)品的件數(shù)記為.如果
,再從這批產(chǎn)品中任取4件作檢驗,若都為優(yōu)質(zhì)品,則這批產(chǎn)品通過檢驗;如果
,再從這批產(chǎn)品中任取1件作檢驗,若為優(yōu)質(zhì)品,則這批產(chǎn)品通過檢驗;其他情況下,這批產(chǎn)品都不能通過檢驗.假設(shè)這批產(chǎn)品的優(yōu)質(zhì)品率為
,即取出的產(chǎn)品是優(yōu)質(zhì)品的概率都為
,且各件產(chǎn)品是否為優(yōu)質(zhì)品相互獨立.
(1)求這批產(chǎn)品通過檢驗的概率;
(2)已知每件產(chǎn)品檢驗費用為100元,凡抽取的每件產(chǎn)品都需要檢驗,對這批產(chǎn)品作質(zhì)量檢驗所需的費用記為(單位:元),求
的分布列及數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】對于定義域為的函數(shù)
,若同時滿足下列條件:
①在
內(nèi)單調(diào)遞增或單調(diào)遞減;
②存在區(qū)間,使
在
上的值域為
;
那么把叫閉函數(shù).
(1)求閉函數(shù)符合條件②的區(qū)間
;
(2)判斷函數(shù)是否為閉函數(shù)?并說明理由;
(3)若是閉函數(shù),求實數(shù)
的范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com