【題目】在平面直角坐標系中,已知任意角
以坐標原點
為頂點,
軸的非負半軸為始邊,若終邊經(jīng)過點
,且
,定義:
,稱“
”為“正余弦函數(shù)”,對于“正余弦函數(shù)
”,有同學得到以下性質(zhì):
①該函數(shù)的值域為; ②該函數(shù)的圖象關于原點對稱;
③該函數(shù)的圖象關于直線對稱; ④該函數(shù)為周期函數(shù),且最小正周期為
;
⑤該函數(shù)的遞增區(qū)間為.
其中正確的是__________.(填上所有正確性質(zhì)的序號)
科目:高中數(shù)學 來源: 題型:
【題目】已知圓過圓
與直線
的交點,且圓
上任意一點關于直線
的對稱點仍在圓
上.
(1)求圓的標準方程;
(2)若圓與
軸正半軸的交點為
,直線
與圓
交于
兩點(異于點
),且點
滿足
,
,求直線
的方程.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】下列四個命題:(1)已知向量 是空間的一組基底,則向量
也是空間的一組基底;(2) 在正方體
中,若點
在
內(nèi),且
,則
的值為1;(3) 圓
上到直線
的距離等于1的點有2個;(4)方程
表示的曲線是一條直線.其中正確命題的序號是.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某工廠生產(chǎn)某種產(chǎn)品,每生產(chǎn)1噸產(chǎn)品需人工費4萬元,每天還需固定成本3萬元.經(jīng)過長期調(diào)查統(tǒng)計,每日的銷售額(單位:萬元)與日產(chǎn)量
(單位:噸)滿足函數(shù)關系
,已知每天生產(chǎn)4噸時利潤為7萬元.
(1)求的值;
(2)當日產(chǎn)量為多少噸時,每天的利潤最大,最大利潤為多少?
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知橢圓 的右焦點為
,上頂點為
,
周長為
,離心率為
.
(1)求橢圓 的方程;
(2)若點 是橢圓
上第一象限內(nèi)的一個點,直線
過點
且與直線
平行,直線
且
與橢圓
交于
兩點,與
交于點
,是否存在常數(shù)
,使
.若存在,求出
的值,若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某保險公司有一款保險產(chǎn)品的歷史收益率(收益率=利潤÷保費收入)的頻率分布直方圖如圖所示:
(Ⅰ)試估計平均收益率;
(Ⅱ)根據(jù)經(jīng)驗,若每份保單的保費在20元的基礎上每增加元,對應的銷量
(萬份)與
(元)有較強線性相關關系,從歷史銷售記錄中抽樣得到如下5組
與
的對應數(shù)據(jù):
據(jù)此計算出的回歸方程為.
(i)求參數(shù)的估計值;
(ii)若把回歸方程當作
與
的線性關系,用(Ⅰ)中求出的平均收益率估計此產(chǎn)品的收益率,每份保單的保費定為多少元時此產(chǎn)品可獲得最大收益,并求出該最大收益.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】潮州統(tǒng)計局就某地居民的月收入調(diào)查了人,并根據(jù)所得數(shù)據(jù)畫了樣本的頻率分
布直方圖(每個分組包括左端點,不包括右端點,如第一組表示收入在)。
(1)求居民月收入在的頻率;
(2)根據(jù)頻率分布直方圖算出樣本數(shù)據(jù)的中位數(shù);
(3)為了分析居民的收入與年齡、職業(yè)等方面的關系,必須按月收入再從這人中分層抽樣方法抽出
人作進一步分析,則月收入在
的這段應抽多少人?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com