【題目】在平面直角坐標(biāo)系中,已知直線
與橢圓
交于點
,
(
在
軸上方),且
.設(shè)點
在
軸上的射影為
,三角形
的面積為2(如圖1).
(1)求橢圓的方程;
(2)設(shè)平行于的直線與橢圓相交,其弦的中點為
.
①求證:直線的斜率為定值;
②設(shè)直線與橢圓相交于兩點
,
(
在
軸上方),點
為橢圓上異于
,
,
,
一點,直線
交
于點
,
交
于點
,如圖2,求證:
為定值.
【答案】(1) (2) ①
②
【解析】試題分析:(1)設(shè),已知
,即
,所以
,故
,即
,再根據(jù)橢圓經(jīng)過
解得
,從而可得橢圓的方程;(2)設(shè)平行
的直線的方程為
,且
,① 聯(lián)立
,得到
,根據(jù)韋達(dá)定理求得
,
,從而可得直線
的斜率為定值,②由題意可知
,求出
.設(shè)
,求出
的坐標(biāo),利用弦長公式分別求出
的值,將
用
表示,化簡消去
即可的結(jié)論.
試題解析:(1)由題意,可設(shè),已知
,即
,
所以,故
,即
;
又橢圓經(jīng)過,即
,解得
;
故所求橢圓的方程為:
(2)設(shè)平行的直線的方程為
,且
,
① 聯(lián)立,得到
,
所以,
;
故,直線的斜率為
(定值)
②由題意可知,
聯(lián)立方程組得
設(shè),先考慮直線斜率都存在的情形:
直線,
聯(lián)立方程組: 得
,
直線,
聯(lián)立方程組: 得
,
則,
,
所以
當(dāng)直線斜率不存在時結(jié)果仍然成立.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,AC是圓O的直徑,點B在圓O上,∠BAC=30°,BM⊥AC于點M,EA⊥平面ABC,FC∥EA,AC=4,EA=3,FC=1.
(1)證明:EM⊥BF;
(2)求平面BEF與平面ABC所成的銳二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù),
(
).
(1)當(dāng)時,若函數(shù)
與
的圖象在
處有相同的切線,求
的值;
(2)當(dāng)時,若對任意
和任意
,總存在不相等的正實數(shù)
,使得
,求
的最小值;
(3)當(dāng)時,設(shè)函數(shù)
與
的圖象交于
兩點.求證:
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在四棱錐PABCD中,AD∥BC,平面PAC⊥平面ABCD,AB=AD=DC=1,
∠ABC=∠DCB=60,E是PC上一點.
(Ⅰ)證明:平面EAB⊥平面PAC;
(Ⅱ)若△PAC是正三角形,且E是PC中點,求三棱錐AEBC的體積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】隨著共享單車的成功運營,更多的共享產(chǎn)品逐步走入大家的世界,共享汽車、共享籃球、共享充電寶等各種共享產(chǎn)品層出不窮.某公司隨機(jī)抽取人對共享產(chǎn)品對共享產(chǎn)品是否對日常生活有益進(jìn)行了問卷調(diào)查,并對參與調(diào)查的
人中的性別以及意見進(jìn)行了分類,得到的數(shù)據(jù)如下表所示:
(Ⅰ)根據(jù)表中的數(shù)據(jù),能否在犯錯的概率不超過的前提下,認(rèn)為對共享產(chǎn)品的態(tài)度與性別有關(guān)系?
(Ⅱ)為了答謝參與問卷調(diào)查的人員,該公司對參與本次問卷調(diào)查的人員隨機(jī)發(fā)放張超市的購物券,購物券金額以及發(fā)放的概率如下:
現(xiàn)有甲、乙兩人領(lǐng)取了購物券,記兩人領(lǐng)取的購物券的總金額為,求
的分布列和數(shù)學(xué)期望.
參考公式: .
臨界值表:
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】橢圓經(jīng)過
為坐標(biāo)原點,線段
的中點在圓
上.
(1)求的方程;
(2)直線不過曲線
的右焦點
,與
交于
兩點,且
與圓
相切,切點在第一象限,
的周長是否為定值?并說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知曲線的參數(shù)方程為
,其中
為參數(shù),且
在直角坐標(biāo)系
中,以坐標(biāo)原點
為極點,以
軸正半軸為極軸建立極坐標(biāo)系.
(1)求曲線的極坐標(biāo)方程;
(2)設(shè)是曲線
上的一點,直線
被曲線
截得的弦長為
,求
點的極坐標(biāo).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某公司為了解用戶對其產(chǎn)品的滿意度,從A、B兩地區(qū)分別隨機(jī)調(diào)查了20個用戶,得到用戶對產(chǎn)品的滿意度評分如下:
A地區(qū): | 62 | 73 | 81 | 92 | 95 | 85 | 74 | 64 | 53 | 76 |
78 | 86 | 95 | 66 | 97 | 78 | 88 | 82 | 76 | 89 | |
B地區(qū): | 73 | 83 | 62 | 51 | 91 | 46 | 53 | 73 | 64 | 82 |
93 | 48 | 95 | 81 | 74 | 56 | 54 | 76 | 65 | 79 |
(Ⅰ)根據(jù)兩組數(shù)據(jù)完成兩地區(qū)用戶滿意度評分的莖葉圖,并通過莖葉圖比較兩地區(qū)滿意度的平均值及分散程度(不要求算出具體值,給出結(jié)論即可):
(Ⅱ)根據(jù)用戶滿意度評分,將用戶的滿意度從低到高分為三個等級:
滿意度評分 | 低于70分 | 70分到89分 | 不低于90分 |
滿意度等級 | 不滿意 | 滿意 | 非常滿意 |
記事件C:“A地區(qū)用戶的滿意度等級高于B地區(qū)用戶的滿意度等級”,假設(shè)兩地區(qū)用戶的評價結(jié)果相互獨立,根據(jù)所給數(shù)據(jù),以事件發(fā)生的頻率作為相應(yīng)事件發(fā)生的概率,求C的概率。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知點在橢圓
上,且橢圓的離心率為
.
(1)求橢圓的方程;
(2)若為橢圓
的右頂點,點
是橢圓
上不同的兩點(均異于
)且滿足直線
與
斜率之積為
.試判斷直線
是否過定點,若是,求出定點坐標(biāo),若不是,說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com