【題目】關(guān)于函數(shù),下列判斷正確的是( )
A. 有最大值和最小值
B. 的圖象的對(duì)稱中心為
(
)
C. 在
上存在單調(diào)遞減區(qū)間
D. 的圖象可由
的圖象向左平移
個(gè)單位而得
【答案】B
【解析】分析:利用三角函數(shù)公式化簡(jiǎn)函數(shù)表達(dá)式,結(jié)合函數(shù)的圖象與性質(zhì)即可判斷.
詳解:函數(shù)=
=
=2sin(2x+)且sin(2x+
)≠0,
對(duì)于A:f(x)=2sin(2x+)存在最大值和不存在最小值.A不對(duì);
對(duì)于B:令2x+=kπ,可得x=
,
∴f(x)的圖象的對(duì)稱中心為(k∈Z),B對(duì).
對(duì)于C:令2x+
,可得
,
∴f(x)在上不存在單調(diào)遞減區(qū)間.
對(duì)于D:y=2sin2x的圖象向左平移個(gè)單位,可得2sin2(x
)=2sin(2x+
),
但sin(2x+)≠0,
故選:B.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】為了調(diào)查某野生動(dòng)物保護(hù)區(qū)內(nèi)某種野生動(dòng)物的數(shù)量,調(diào)查人員某天逮到這種動(dòng)物1200只作好標(biāo)記后放回,經(jīng)過一星期后,又逮到這種動(dòng)物1000只,其中作過標(biāo)記的有100只,按概率的方法估算,保護(hù)區(qū)內(nèi)有多少只該種動(dòng)物.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),
.
(1)當(dāng)時(shí),求函數(shù)
的單調(diào)區(qū)間和極值;
(2)若對(duì)于任意,都有
成立,求實(shí)數(shù)
的取值范圍;
(3)若,且
,證明:
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知(
且
)在區(qū)間
上的最大值與最小值之和為
,
,其中
.
(1)直接寫出的解析式和單調(diào)性;
(2)若對(duì)
恒成立,求實(shí)數(shù)
的取值范圍;
(3)設(shè),若
,使得對(duì)
,都有
,求實(shí)數(shù)
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)是由
個(gè)有序?qū)崝?shù)構(gòu)成的一個(gè)數(shù)組,記作:
.其中
稱為數(shù)組
的“元”,
為
的下標(biāo).如果數(shù)組
中的每個(gè)“元”都來自數(shù)組
中不同下標(biāo)的“元”則稱
為
的子數(shù)組.定義兩個(gè)數(shù)組
,
的關(guān)系數(shù)為
.
(1)若,
,設(shè)
是
的含有兩個(gè)“元”的子數(shù)組,求
的最大值及此時(shí)的數(shù)組
;
(2)若,
,且
,
為
的含有三個(gè)“元”的子數(shù)組,求
的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】高鐵、網(wǎng)購(gòu)、移動(dòng)支付和共享單車被譽(yù)為中國(guó)的“新四大發(fā)明”,彰顯出中國(guó)式創(chuàng)新的強(qiáng)勁活力.某移動(dòng)支付公司從我市移動(dòng)支付用戶中隨機(jī)抽取100名進(jìn)行調(diào)查,得到如下數(shù)據(jù):
每周移動(dòng)支付次數(shù) | 1次 | 2次 | 3次 | 4次 | 5次 | 6次及以上 |
男 | 10 | 8 | 7 | 3 | 2 | 15 |
女 | 5 | 4 | 6 | 4 | 6 | 30 |
合計(jì) | 15 | 12 | 13 | 7 | 8 | 45 |
(1)把每周使用移動(dòng)支付6次及6次以上的用戶稱為“移動(dòng)支付達(dá)人”,按分層抽樣的方法,在我市所有“移動(dòng)支付達(dá)人”中,隨機(jī)抽取6名用戶
求抽取的6名用戶中,男女用戶各多少人;
② 從這6名用戶中抽取2人,求既有男“移動(dòng)支付達(dá)人”又有女“移動(dòng)支付達(dá)人”的概率.
(2)把每周使用移動(dòng)支付超過3次的用戶稱為“移動(dòng)支付活躍用戶”,填寫下表,問能否在犯錯(cuò)誤概率不超過0.01的前提下,認(rèn)為“移動(dòng)支付活躍用戶”與性別有關(guān)?
P(χ2≥k) | 0.100 | 0.050 | 0.010 |
k | 2.706 | 3.841 | .635 |
非移動(dòng)支付活躍用戶 | 移動(dòng)支付活躍用戶 | 合計(jì) | |
男 | |||
女 | |||
合計(jì) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】選修4-4:坐標(biāo)系與參數(shù)方程
在直角坐標(biāo)系中,圓
的參數(shù)方程為
(
為參數(shù)),圓
與圓
外切于原點(diǎn)
,且兩圓圓心的距離
,以坐標(biāo)原點(diǎn)為極點(diǎn),
軸正半軸為極軸建立極坐標(biāo)系.
(1)求圓和圓
的極坐標(biāo)方程;
(2)過點(diǎn)的直線
、
與圓
異于點(diǎn)
的交點(diǎn)分別為點(diǎn)
和點(diǎn)
,與圓
異于點(diǎn)
的交點(diǎn)分別為點(diǎn)
和點(diǎn)
,且
.求四邊形
面積的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知平面
,底面
是矩形,
,
,
是
中點(diǎn),點(diǎn)
在
邊上.
(1)求三棱錐的體積;
(2)求證:;
(3)若平面
,試確定
點(diǎn)的位置.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com