【題目】已知函數(shù),其中
為自然對(duì)數(shù)的底數(shù).
(1)設(shè)函數(shù)(其中
為
的導(dǎo)函數(shù)),判斷
在
上的單調(diào)性;
(2)若函數(shù)在定義域內(nèi)無零點(diǎn),試確定正數(shù)
的取值范圍.
【答案】(1) 在
上單調(diào)遞增.(2)
.
【解析】
(1)先分析得到,即得函數(shù)
在
上的單調(diào)性;(2)先利用導(dǎo)數(shù)求出
,再對(duì)a分三種情況討論,討論每一種情況下的零點(diǎn)情況得解.
(1)因?yàn)?/span>,則
,
,
∴,
∴在
上單調(diào)遞增.
(2)由知
,
由(1)知在
上單調(diào)遞增,且
,可知當(dāng)
時(shí),
,
則有唯一零點(diǎn),設(shè)此零點(diǎn)為
,
易知時(shí),
,
單調(diào)遞增;
時(shí),
,
單調(diào)遞減,
故,其中
.
令,
則,
易知在
上恒成立,所以
,
在
上單調(diào)遞增,且
.
①當(dāng)時(shí),
,由
在
上單調(diào)遞增知
,
則,由
在
上單調(diào)遞增,
,所以
,故
在
上有零點(diǎn),不符合題意;
②當(dāng)時(shí),
,由
的單調(diào)性知
,則
,此時(shí)
有一個(gè)零點(diǎn),不符合題意;
③當(dāng)時(shí),
,由
的單調(diào)性知
,則
,此時(shí)
沒有零點(diǎn).
綜上所述,當(dāng)無零點(diǎn)時(shí),正數(shù)
的取值范圍是
.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),
(1)若時(shí),求證:當(dāng)
時(shí),
;
(2)若函數(shù)有4個(gè)零點(diǎn),求實(shí)數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)若在
處取得極值,求
的值;
(2)求在區(qū)間
上的最小值;
(3)在(1)的條件下,若,求證:當(dāng)
時(shí),恒有
成立.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓:
的焦點(diǎn)
的坐標(biāo)為
,
的坐標(biāo)為
,且經(jīng)過點(diǎn)
,
軸.
(1)求橢圓的方程;
(2)設(shè)過的直線
與橢圓
交于
兩不同點(diǎn),在橢圓
上是否存在一點(diǎn)
,使四邊形
為平行四邊形?若存在,求出直線
的方程;若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓的右焦點(diǎn)F到左頂點(diǎn)的距離為3.
(1)求橢圓C的方程;
(2)設(shè)O是坐標(biāo)原點(diǎn),過點(diǎn)F的直線與橢圓C交于A,B兩點(diǎn)(A,B不在x軸上),若,延長(zhǎng)AO交橢圓與點(diǎn)G,求四邊形AGBE的面積S的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】《算法統(tǒng)宗》全稱《新編直指算法統(tǒng)宗》,是屮國(guó)古代數(shù)學(xué)名著,程大位著.書中有如下問題:“今有五人均銀四十兩,甲得十兩四錢,戊得五兩六錢.問:次第均之,乙丙丁各該若干?”意思是:有5人分40兩銀子,甲分10兩4錢,戊分5兩6錢,且相鄰兩項(xiàng)差相等,則乙丙丁各分幾兩幾錢?(注:1兩等于10錢)( )
A.乙分8兩,丙分8兩,丁分8兩B.乙分8兩2錢,丙分8兩,丁分7兩8錢
C.乙分9兩2錢,丙分8兩,丁分6兩8錢D.乙分9兩,丙分8兩,丁分7兩
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】傳染病的流行必須具備的三個(gè)基本環(huán)節(jié)是:傳染源、傳播途徑和人群易感性.三個(gè)環(huán)節(jié)必須同時(shí)存在,方能構(gòu)成傳染病流行.呼吸道飛沫和密切接觸傳播是新冠狀病毒的主要傳播途徑,為了有效防控新冠狀病毒的流行,人們出行都應(yīng)該佩戴口罩.某地區(qū)已經(jīng)出現(xiàn)了新冠狀病毒的感染病人,為了掌握該地區(qū)居民的防控意識(shí)和防控情況,用分層抽樣的方法從全體居民中抽出一個(gè)容量為100的樣本,統(tǒng)計(jì)樣本中每個(gè)人出行是否會(huì)佩戴口罩的情況,得到下面列聯(lián)表:
戴口罩 | 不戴口罩 | |
青年人 | 50 | 10 |
中老年人 | 20 | 20 |
(1)能否有的把握認(rèn)為是否會(huì)佩戴口罩出行的行為與年齡有關(guān)?
(2)用樣本估計(jì)總體,若從該地區(qū)出行不戴口罩的居民中隨機(jī)抽取5人,求恰好有2人是青年人的概率.
附:
0.100 | 0.050 | 0.010 | 0.001 | |
2.706 | 3.841 | 6.635 | 10.828 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】百年大計(jì),教育為本.某校積極響應(yīng)教育部號(hào)召,不斷加大拔尖人才的培養(yǎng)力度,為清華、北大等排名前十的名校輸送更多的人才.該校成立特長(zhǎng)班進(jìn)行專項(xiàng)培訓(xùn).據(jù)統(tǒng)計(jì)有如下表格.(其中表示通過自主招生獲得降分資格的學(xué)生人數(shù),
表示被清華、北大等名校錄取的學(xué)生人數(shù))
年份(屆) | 2014 | 2015 | 2016 | 2017 | 2018 |
41 | 49 | 55 | 57 | 63 | |
82 | 96 | 108 | 106 | 123 |
(1)通過畫散點(diǎn)圖發(fā)現(xiàn)與
之間具有線性相關(guān)關(guān)系,求
關(guān)于
的線性回歸方程;(保留兩位有效數(shù)字)
(2)若已知該校2019年通過自主招生獲得降分資格的學(xué)生人數(shù)為61人,預(yù)測(cè)2019年高考該?既嗣5娜藬(shù);
(3)若從2014年和2018年考人名校的學(xué)生中采用分層抽樣的方式抽取出5個(gè)人回校宣傳,在選取的5個(gè)人中再選取2人進(jìn)行演講,求進(jìn)行演講的兩人是2018年畢業(yè)的人數(shù)的分布列和期望.
參考公式:,
參考數(shù)據(jù):,
,
,
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)有兩個(gè)零點(diǎn)
.
(1)求的取值范圍;
(2)是否存在實(shí)數(shù), 對(duì)于符合題意的任意
,當(dāng)
時(shí)均有
?
若存在,求出所有的值;若不存在,請(qǐng)說明理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com