【題目】將圓為參數(shù))上的每一點的橫坐標保持不變,縱坐標變?yōu)樵瓉淼?/span>
倍,得到曲線
(1)求出的普通方程;
(2)設(shè)直線:
與
的交點為
,
,以坐標原點為極點,
軸正半軸為極軸建立極坐標系,求過線段
的中點且與
垂直的直線的極坐標方程.
【答案】(1)(2)
【解析】試題分析:(1)本問首先應(yīng)用伸縮變換公式,根據(jù)公式可以得到變化后的參數(shù)方程為
(
為參數(shù)),即
,于是可以根據(jù)
畫為普通方程;(2)將曲線
的普通方程與直線
的方程聯(lián)立,可以解方程組,方程組的解分別為
兩點坐標,于是可以求出直線
的斜率及中點坐標,根據(jù)垂直關(guān)系可以求出線段
的垂直平分線
的方程,然后根據(jù)極坐標與直角坐標互化公式
,即得到直線
的極坐標方程.
試題解析:(1)設(shè)為圓上的任意一點,在已知的變換下變?yōu)?/span>
上的點
,
則有
(2) 解得:
所以則線段
的中點坐標為
,所求直線的斜率
,于是所求直線方程為
.
化為極坐標方程得: ,即
科目:高中數(shù)學(xué) 來源: 題型:
【題目】數(shù)列{an}的前n項和記為Sn , a1=1,an+1=2Sn+1(n≥1).
(1)求{an}的通項公式;
(2)等差數(shù)列{bn}的各項為正,其前n項和為Tn , 且T3=15,又a1+b1 , a2+b2 , a3+b3成等比數(shù)列,求Tn .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】為了解小學(xué)生的體能情況,抽取了某小學(xué)同年級部分學(xué)生進行跳繩測試,將所得數(shù)據(jù)整理后,畫出頻率分布直方圖(如圖所示),已知圖中從左到右前三個小組的頻率分別時0.1,0.3,0.4,第一小組的頻數(shù)為5.
(1)求第四小組的頻率?
(2)問參加這次測試的學(xué)生人數(shù)是多少?
(3)問在這次測試中,學(xué)生跳繩次數(shù)的中位數(shù)落在第幾小組內(nèi)?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四棱錐中,
底面
,底面
是直角梯形,
,
,
,
是
的中點.
(1)求證:平面平面
;
(2)若二面角的余弦值為
,求直線
與平面
所成角的正弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】選修4-4:坐標系與參數(shù)方程.
在平面直角坐標系中,傾斜角為
的直線
的參數(shù)方程為
(
為參數(shù)).以坐標原點為極點,以
軸的正半軸為極軸,建立極坐標系,曲線
的極坐標方程是
.
(1)寫出直線的普通方程和曲線
的直角坐標方程;
(2)已知點.若點
的極坐標為
,直線
經(jīng)過點
且與曲線
相交于
兩點,設(shè)線段
的中點為
,求
的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知向量 ,
,且
,f(x)=
﹣2λ|
|(λ為常數(shù)),求:
(1)
及|
|;
(2)若f(x)的最小值是 ,求實數(shù)λ的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】若存在實數(shù)和
,使得函數(shù)
和
對定義域內(nèi)的任意
均滿足:
,且存在
使得
,存在
使得
,則稱直線
為函數(shù)
和
的“分界線”.在下列說法中正確的是__________(寫出所有正確命題的編號).
①任意兩個一次函數(shù)最多存在一條“分界線”;
②“分界線”存在的兩個函數(shù)的圖象最多只有兩個交點;
③與
的“分界線”是
;
④與
的“分界線”是
或
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)當(dāng),
取一切非負實數(shù)時,若
,求
的范圍;
(2)若函數(shù)存在極大值
,求
的最小值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com