【題目】如圖1,AB是⊙O的直徑,過(guò)⊙O上一點(diǎn)C作直線(xiàn)l,AD⊥l于點(diǎn)D.
(1)連接AC、BC,若∠DAC=∠BAC,求證:直線(xiàn)l是⊙O的切線(xiàn);
(2)將圖1的直線(xiàn)l向上平移,使得直線(xiàn)l與⊙O交于C、E兩點(diǎn),連接AC、AE、BE, 得到圖2. 若∠DAC=45°,AD=2cm,CE=4cm,求圖2中陰影部分(弓形)的面積.
【答案】(1)詳見(jiàn)解析;(2)
【解析】
(1)連接OC, 由角平分線(xiàn)的定義和等腰三角形的性質(zhì),得,從而得l⊥OC,進(jìn)而即可得到結(jié)論;
(2)由圓的內(nèi)接四邊形的性質(zhì)和圓周角定理的推論,得△ABE是等腰直角三角形,通過(guò)勾股定理得的長(zhǎng),從而求出
,連接OE,求出
,進(jìn)而即可求解.
(1) 連接OC,
∵,
∴,
∵∠DAC=∠BAC,
∴,
∵在Rt△ADC中∠DAC+∠ACD=90°,
∴,即直線(xiàn)l⊥OC,
∴直線(xiàn)l是⊙O的切線(xiàn);
(2)∵ 四邊形ACEB內(nèi)接于圓,
∴ ,
又∵直徑AB所對(duì)圓周角,
∴△ADC與△ABE都是等腰直角三角形,
∴,
∴,
∵,
連接OE,則,
∴,
∴圖中陰影部分面積=.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,O為原點(diǎn),一次函數(shù)與反比例函數(shù)的圖象相交于A(2,1)B(-1,-2)兩點(diǎn),與軸相交于點(diǎn)C.
(1)分別求反比例函數(shù)和一次函數(shù)的解析式(關(guān)系式);
(2)連接OA,求△AOC的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某小區(qū)開(kāi)展了“行車(chē)安全,方便居民”的活動(dòng),對(duì)地下車(chē)庫(kù)作了改進(jìn).如圖,這小區(qū)原地下車(chē)庫(kù)的入口處有斜坡AC長(zhǎng)為13米,它的坡度為i=1:2.4,AB⊥BC,為了居民行車(chē)安全,現(xiàn)將斜坡的坡角改為13°,即∠ADC=13°(此時(shí)點(diǎn)B、C、D在同一直線(xiàn)上).
(1)求這個(gè)車(chē)庫(kù)的高度AB;
(2)求斜坡改進(jìn)后的起點(diǎn)D與原起點(diǎn)C的距離(結(jié)果精確到0.1米).
(參考數(shù)據(jù):sin13°≈0.225,cos13°≈0.974,tan13°≈0.231,cot13°≈4.331)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,O 為坐標(biāo)原點(diǎn),P是反比例函數(shù)圖象上任意一點(diǎn),以P為圓心,PO為半徑的圓與x軸交于點(diǎn) A、與y軸交于點(diǎn)B,連接AB.
(1)求證:P為線(xiàn)段AB的中點(diǎn);
(2)求△AOB的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,將一張畫(huà)有內(nèi)切圓⊙P的直角三角形紙片AOB置于平面直角坐標(biāo)系中,已知點(diǎn)A(0,3),B(4,0),⊙P與三角形各邊相切的切點(diǎn)分別為D、E、F. 將直角三角形紙片繞其右下角的頂點(diǎn)依次按順時(shí)針?lè)较蛐D(zhuǎn),第一次旋轉(zhuǎn)至圖①位置,第二次旋轉(zhuǎn)至圖②位置,…,則直角三角形紙片旋轉(zhuǎn)2018次后,它的內(nèi)切圓圓心P的坐標(biāo)為____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,矩形ABCD中,AB=8cm,BC=6cm,點(diǎn)P從點(diǎn)A出發(fā),以lcm/s的速度沿A→D→C方向勻速運(yùn)動(dòng),同時(shí)點(diǎn)Q從點(diǎn)A出發(fā),以2cm/s的速度沿A→B→C方向勻速運(yùn)動(dòng),當(dāng)一個(gè)點(diǎn)到達(dá)點(diǎn)C時(shí),另一個(gè)點(diǎn)也隨之停止.設(shè)運(yùn)動(dòng)時(shí)間為t(s),△APQ的面積為S(cm2),下列能大致反映S與t之間函數(shù)關(guān)系的圖象是( )
A. B.
C.
D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知銳角∠AOB如圖,(1)在射線(xiàn)OA上取一點(diǎn)C,以點(diǎn)O為圓心,OC長(zhǎng)為半徑作,交射線(xiàn)OB于點(diǎn)D,連接CD;
(2)分別以點(diǎn)C,D為圓心,CD長(zhǎng)為半徑作弧,交于點(diǎn)M,N;
(3)連接OM,MN.
根據(jù)以上作圖過(guò)程及所作圖形,下列結(jié)論中錯(cuò)誤的是( )
A. ∠COM=∠CODB. 若OM=MN,則∠AOB=20°
C. MN∥CDD. MN=3CD
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知Rt△ABC中,∠ACB=90°,AC=,BC=16.點(diǎn)O在邊BC上,以O為圓心,OB為半徑的弧經(jīng)過(guò)點(diǎn)A.P是弧AB上的一個(gè)動(dòng)點(diǎn).
(1)求半徑OB的長(zhǎng);
(2)如果點(diǎn)P是弧AB的中點(diǎn),聯(lián)結(jié)PC,求∠PCB的正切值;
(3)如果BA平分∠PBC,延長(zhǎng)BP、CA交于點(diǎn)D,求線(xiàn)段DP的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,拋物線(xiàn)與
軸交于點(diǎn)
,
兩點(diǎn),直線(xiàn)
與
軸交于點(diǎn)
,與
軸交于點(diǎn)
.點(diǎn)
是
軸上方的拋物線(xiàn)上一動(dòng)點(diǎn),過(guò)點(diǎn)
作
軸于點(diǎn)
,交直線(xiàn)
于點(diǎn)
.設(shè)點(diǎn)
的橫坐標(biāo)為
.
(1)求拋物線(xiàn)的解析式;
(2)若,求
的值;
(3)若點(diǎn)是點(diǎn)
關(guān)于直線(xiàn)OE的對(duì)稱(chēng)點(diǎn),是否存在點(diǎn)
,使點(diǎn)
落在
上?若存在,請(qǐng)直接寫(xiě)出相應(yīng)的點(diǎn)
的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com