8天堂资源在线,国产成人久久av免费高潮,国产精品亚洲综合色区韩国,国产欧美va天堂在线观看视频,xx色综合

(Ⅰ)求證:, 查看更多

 

題目列表(包括答案和解析)

(Ⅰ)求證:;
(Ⅱ)化簡:

查看答案和解析>>

(Ⅰ)求證:
(Ⅱ)利用第(Ⅰ)問的結(jié)果證明Cn1+2Cn2+3Cn3+…+nCnn=n•2n-1;  
(Ⅲ)其實我們常借用構(gòu)造等式,對同一個量算兩次的方法來證明組合等式,譬如:(1+x)1+(1+x)2+(1+x)3+…+(1+x)n=;,由左邊可求得x2的系數(shù)為C22+C32+C42+…+Cn2,利用右式可得x2的系數(shù)為Cn+13,所以C22+C32+C42+…+Cn2=Cn+13.請利用此方法證明:(C2n2-(C2n12+(C2n22-(C2n32+…+(C2n2n2=(-1)nC2nn

查看答案和解析>>

(Ⅰ)求證:
sinx
1-cosx
=
1+cosx
sinx
;
(Ⅱ)化簡:
tan(3π-α)
sin(π-α)sin(
3
2
π-α)
+
sin(2π-α)cos(α-
2
)
sin(
2
+α)cos(2π+α)

查看答案和解析>>

(Ⅰ)求證:
C
m
n
=
n
m
C
m-1
n-1

(Ⅱ)利用第(Ⅰ)問的結(jié)果證明Cn1+2Cn2+3Cn3+…+nCnn=n•2n-1;  
(Ⅲ)其實我們常借用構(gòu)造等式,對同一個量算兩次的方法來證明組合等式,譬如:(1+x)1+(1+x)2+(1+x)3+…+(1+x)n=
(1+x)[1-(1+x)n]
1-(1+x)
=
(1+x)n+1-(1+x)
x
;,由左邊可求得x2的系數(shù)為C22+C32+C42+…+Cn2,利用右式可得x2的系數(shù)為Cn+13,所以C22+C32+C42+…+Cn2=Cn+13.請利用此方法證明:(C2n02-(C2n12+(C2n22-(C2n32+…+(C2n2n2=(-1)nC2nn

查看答案和解析>>

(Ⅰ)求證:
sinx
1-cosx
=
1+cosx
sinx

(Ⅱ)化簡:
tan(3π-α)
sin(π-α)sin(
3
2
π-α)
+
sin(2π-α)cos(α-
2
)
sin(
2
+α)cos(2π+α)

查看答案和解析>>

一、選擇題

1.D  2.B  3.B  4.B  5.A  6.B  7.C  8.B  9.C  10.A  11.B  12.D

    1. <cite id="qgxgk"></cite>
      • 2,4,6

        13.    14.2      15. 

        16.

        三、解答題

        17.(本小題滿分12分)

               解證:(I)

               由余弦定理得              …………4分

               又                                               …………6分

             (II)

                                                                         …………10分

                                                                                              

        即函數(shù)的值域是                                                            …………12分

        18.(本小題滿分12分)

               解:(I)依題意

                                                                    …………2分

              

                                                                            …………4分

                                                                                …………5分

        (II)                   …………6分

                                                                 …………7分

                        …………9分

                                               …………12分

        19.(本小題滿分12分)

             (I)證明:依題意知:

             …4分

           (II)由(I)知平面ABCD

               ∴平面PAB⊥平面ABCD.                        …………4分

             在PB上取一點M,作MNAB,則MN⊥平面ABCD,

               設(shè)MN=h

               則

                                    …………6分

               要使

               即MPB的中點.                                                                  …………8分

           (Ⅲ)連接BD交AC于O,因為AB//CD,AB=2,CD=1,由相似三角形易得BO=2OD

        ∴O不是BD的中心……………………10分

        又∵M為PB的中點

        ∴在△PBD中,OM與PD不平行

        ∴OM所以直線與PD所在直線相交

        又OM平面AMC

        ∴直線PD與平面AMC不平行.……………………12分

        20.(本小題滿分12分)

               解:由圖可知M(60,98),N(500,230),C(500,168),MN//CD.

        設(shè)這兩種方案的應(yīng)付話費與通話時間的函數(shù)關(guān)系分別為

        ………………2分

        ……………………4分

           (Ⅰ)通話2小時,兩種方案的話費分別為116元、168元.………………6分

           (Ⅱ)因為

        故方案B從500分鐘以后,每分鐘收費0.3元.………………8分

        (每分鐘收費即為CD的斜率)

           (Ⅲ)由圖可知,當(dāng);

        當(dāng);

        當(dāng)……………………11分

        綜上,當(dāng)通話時間在()時,方案B較方案A優(yōu)惠.………………12分

        21.(本小題滿分12分)

        解:(Ⅰ)設(shè)的夾角為,則的夾角為,

        ……………………2分

        ………………4分

        (II)設(shè)

                                                     …………5分

              

               由                            …………6分

                                    …………7分

               上是增函數(shù)

               上為增函數(shù)

               當(dāng)m=2時,的最小值為         …………10分

               此時P(2,0),橢圓的另一焦點為,則橢圓長軸長

              

                  …………12分

        22.(本小題滿分14分)

               解:(I)                           …………2分

               由                                                           …………4分

              

               當(dāng)的單調(diào)增區(qū)間是,單調(diào)減區(qū)間是

                                                                                             …………6分

               當(dāng)的單調(diào)增區(qū)間是,單調(diào)減區(qū)間是

                                                                                              …………8分

           (II)當(dāng)上單調(diào)遞增,因此

              

                                                                                                              …………10分

               上遞減,所以值域是   

                                                                                     …………12分

               因為在

                                                                                                                     …………13分

               、使得成立.

                                                                                                                     …………14分

         

         

         

        <cite id="qgxgk"><li id="qgxgk"></li></cite>
      • <cite id="qgxgk"><rp id="qgxgk"></rp></cite>