題目列表(包括答案和解析)
(本小題滿分14分)
設(shè)是定義在[-1,1]上的偶函數(shù),
的圖象與
的圖象關(guān)于直線
對稱,且當(dāng)x∈[ 2,3 ] 時(shí),
222233.
(1)求的解析式;
(2)若在
上為增函數(shù),求
的取值范圍;
(3)是否存在正整數(shù),使
的圖象的最高點(diǎn)落在直線
上?若存在,求出
的值;若不存在,請說明理由.
(本小題滿分14分)
設(shè)關(guān)于的函數(shù)
,其中
為
上的常數(shù),若函數(shù)
在
處取得極大值
.
(Ⅰ)求實(shí)數(shù)的值;
(Ⅱ)若函數(shù)的圖象與直線
有兩個(gè)交點(diǎn),求實(shí)數(shù)
的取值范圍;
(Ⅲ)設(shè)函數(shù),若對任意地
,
恒成立,求實(shí)數(shù)
的取值范圍.
(本小題滿分14分)
已知:函數(shù)(
),
.
。1)若函數(shù)圖象上的點(diǎn)到直線
距離的最小值為
,求
的值;
。2)關(guān)于的不等式
的解集中的整數(shù)恰有3個(gè),求實(shí)數(shù)
的取值范圍;
。3)對于函數(shù)與
定義域上的任意實(shí)數(shù)
,若存在常數(shù)
,使得不等式
和
都成立,則稱直線
為函數(shù)
與
的“分界線”。設(shè)
,
,試探究
與
是否存在“分界線”?若存在,求出“分界線”的方程;若不存在,請說明理由.
(本小題滿分14分)
已知關(guān)于x的函數(shù),其導(dǎo)函數(shù)
.
(1)如果函數(shù)試確定b、c的值;
(2)設(shè)當(dāng)時(shí),函數(shù)
的圖象上任一點(diǎn)P處的切線斜率為k,若
,求實(shí)數(shù)b的取值范圍。
(本小題滿分14分)某公司試銷一種成本單價(jià)為500元的新產(chǎn)品,規(guī)定試銷時(shí)銷售單價(jià)不低于成本單價(jià),又不高于800元.經(jīng)試銷調(diào)查,發(fā)現(xiàn)銷售量y(件)與銷售單價(jià)x(元)之間的關(guān)系可近似看作一次函數(shù)y=kx+b(k≠0),函數(shù)圖象如圖所示.
(1)根據(jù)圖象,求一次函數(shù)y=kx+b(k≠0)的表達(dá)式;
(2)設(shè)公司獲得的毛利潤(毛利潤=銷售總價(jià)-成本總價(jià))為S元.試問銷售單價(jià)定為多少時(shí),該公司可獲得最大毛利潤?最大毛利潤是多少?此時(shí)的銷售量是多少?
題號
答案
1.解析:命題“”的否命題是:“
”,故選C.
2.解析:由已知,得:,故選
.
3.解析:若,則
,解得
.故選
.
4.解析:由題意得,又
.
故選.
5.解析:設(shè)成績?yōu)?sub>環(huán)的人數(shù)是
,由平均數(shù)的概念,得:
.
故選.
6.解析:是偶函數(shù);
是指數(shù)函數(shù);
是對數(shù)函數(shù).故選
.
7.解析:①的三視圖均為正方形;②的三視圖中正視圖.側(cè)視圖為相同的等腰三角形,俯視圖為圓;④的三視圖中正視圖.側(cè)視圖為相同的等腰三角形,俯視圖為正方形.故選.
8.解析:程序的運(yùn)行結(jié)果是,選
.
9.解析:的圖象先向左平移
,橫坐標(biāo)變?yōu)樵瓉淼?sub>
倍
.答案:
.
10.解析:特殊值法:令,有
.故選
.
題號
11
12
13
14
15
答案
11.解析:.
12.解析:令,則
,令
,則
,
同理得
即當(dāng)
時(shí),
的值以
為周期,
所以.
13.解析:由圖象知:當(dāng)函數(shù)的圖象過點(diǎn)
時(shí),
取得最大值為2.
14. (坐標(biāo)系與參數(shù)方程選做題)解析:將極坐標(biāo)方程轉(zhuǎn)化成直角坐標(biāo)方程,圓
上的動點(diǎn)到直線
的距離的最大值就是圓心
到直線
的距離
再加上半徑
.故填
.
15. (幾何證明選講選做題)解析:連結(jié),
則在和
中:
,
且,所以
,
故.
三.解答題:本大題共6小題,滿分80分.解答須寫出文字說明.證明過程和演算步驟.
16.析:主要考察三角形中的邊角關(guān)系、向量的坐標(biāo)運(yùn)算、二次函數(shù)的最值.
解:(Ⅰ)∵,∴
, ………………3分
又∵,∴
. ……………………………………………5分
(Ⅱ) ……………………………………………6分
, ………………………8分
∵
,∴
. ……………10分
∴當(dāng)時(shí),取得最小值為
. …………12分
17.析:主要考察立體幾何中的位置關(guān)系、體積.
解:(Ⅰ)證明:連結(jié),則
//
, …………1分
∵是正方形,∴
.∵
面
,∴
.
又,∴
面
. ………………4分
∵面
,∴
,
∴
. …………………………………………5分
(Ⅱ)證明:作的中點(diǎn)F,連結(jié)
.
∵是
的中點(diǎn),∴
,
∴四邊形是平行四邊形,∴
. ………7分
∵是
的中點(diǎn),∴
,
又,∴
.
∴四邊形
是平行四邊形,
//
,
∵,
,
∴平面面
. …………………………………9分
又平面
,∴
面
. ………………10分
(3). ……………………………11分
. ……………………………14分
18.析:主要考察事件的運(yùn)算、古典概型.
解:設(shè)“朋友乘火車、輪船、汽車、飛機(jī)來”分別為事件,則
,
,
,
,且事件
之間是互斥的.
(Ⅰ)他乘火車或飛機(jī)來的概率為………4分
(Ⅱ)他乘輪船來的概率是,
所以他不乘輪船來的概率為. ………………8分
(Ⅲ)由于,
所以他可能是乘飛機(jī)來也可能是乘火車或汽車來的. …………………12分
19.析:主要考察函數(shù)的圖象與性質(zhì),導(dǎo)數(shù)的應(yīng)用.
解:(Ⅰ)由函數(shù)的圖象關(guān)于原點(diǎn)對稱,得
,………………1分
∴,∴
. …………2分
∴,∴
. ……………………………4分
∴,即
. ……………………6分
∴. ……………………………………………………7分
(Ⅱ)由(Ⅰ)知,∴
.
由 ,∴
. …………………9分
0
+
0
ㄋ
極小
ㄊ
極大
ㄋ
∴. ………………………14分
20.析:主要考察直線.圓的方程,直線與圓的位置關(guān)系.
解:(Ⅰ)(法一)∵點(diǎn)在圓
上, …………………………2分
∴直線的方程為
,即
. ……………………………5分
(法二)當(dāng)直線垂直
軸時(shí),不符合題意. ……………………………2分
當(dāng)直線與
軸不垂直時(shí),設(shè)直線
的方程為
,即
.
則圓心到直線
的距離
,即:
,解得
,……4分
∴直線的方程為
. ……………………………………………5分
(Ⅱ)設(shè)圓:
,∵圓
過原點(diǎn),∴
.
∴圓的方程為
.…………………………7分
∵圓被直線
截得的弦長為
,∴圓心
到直線
:
的距離:
. …………………………………………9分
整理得:,解得
或
. ……………………………10分
∵,∴
. …………………………………………………………13分
∴圓:
. ……………………………………14分
21.析:主要考察等差、等比數(shù)列的定義、式,求數(shù)列的和的方法.
解:(Ⅰ)設(shè)的公差為
,則:
,
,
∵,
,∴
,∴
. ………………………2分
∴. …………………………………………4分
(Ⅱ)當(dāng)時(shí),
,由
,得
. …………………5分
當(dāng)時(shí),
,
,
∴,即
. …………………………7分
∴. ……………………………………………………………8分
∴是以
為首項(xiàng),
為公比的等比數(shù)列. …………………………………9分
(Ⅲ)由(2)可知:. ……………………………10分
∴. …………………………………11分
∴.
∴.
∴
. ………………………………………13分
∴. …………………………………………………14分
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com