題目列表(包括答案和解析)
已知數(shù)列
(I)若函數(shù)求證:
;
(II)設(shè)。試問:是否存在關(guān)于n的整式g(n),使得
對于一切不小于2的自然數(shù)n恒成立?若不存在,試說明理由;若存在,寫現(xiàn)g(n)的解析式,并加以證明。
已知函數(shù),數(shù)列
的項(xiàng)滿足:
,(1)試求
(2) 猜想數(shù)列的通項(xiàng),并利用數(shù)學(xué)歸納法證明.
【解析】第一問中,利用遞推關(guān)系,
,
第二問中,由(1)猜想得:然后再用數(shù)學(xué)歸納法分為兩步驟證明即可。
解: (1) ,
,
…………….7分
(2)由(1)猜想得:
(數(shù)學(xué)歸納法證明)i) ,
,命題成立
ii) 假設(shè)時,
成立
則時,
綜合i),ii) : 成立
過拋物線的對稱軸上的定點(diǎn)
,作直線
與拋物線相交于
兩點(diǎn).
(I)試證明兩點(diǎn)的縱坐標(biāo)之積為定值;
(II)若點(diǎn)是定直線
上的任一點(diǎn),試探索三條直線
的斜率之間的關(guān)系,并給出證明.
【解析】本題主要考查拋物線與直線的位置關(guān)系以及發(fā)現(xiàn)問題和解決問題的能力.
(1)中證明:設(shè)下證之:設(shè)直線AB的方程為: x=ty+m與y2=2px聯(lián)立得消去x得y2=2pty-2pm=0,由韋達(dá)定理得
(2)中:因?yàn)槿龡l直線AN,MN,BN的斜率成等差數(shù)列,下證之
設(shè)點(diǎn)N(-m,n),則直線AN的斜率KAN=,直線BN的斜率KBN=
KAN+KBN=+
本題主要考查拋物線與直線的位置關(guān)系以及發(fā)現(xiàn)問題和解決問題的能力.
已知橢圓的離心率為
,以原點(diǎn)為圓心,橢圓的短半軸長為半徑的圓與直線
相切.
(I)求橢圓的方程;
(II)若過點(diǎn)(2,0)的直線與橢圓
相交于兩點(diǎn)
,設(shè)
為橢圓上一點(diǎn),且滿足
(O為坐標(biāo)原點(diǎn)),當(dāng)
<
時,求實(shí)數(shù)
的取值范圍.
【解析】本試題主要考查了橢圓的方程以及直線與橢圓的位置關(guān)系的運(yùn)用。
第一問中,利用
第二問中,利用直線與橢圓聯(lián)系,可知得到一元二次方程中,可得k的范圍,然后利用向量的
<
不等式,表示得到t的范圍。
解:(1)由題意知
給出問題:已知滿足
,試判定
的形狀.某學(xué)生的解答如下:
解:(i)由余弦定理可得,
,
,
,
故是直角三角形.
(ii)設(shè)外接圓半徑為
.由正弦定理可得,原式等價于
,
故是等腰三角形.
綜上可知,是等腰直角三角形.
請問:該學(xué)生的解答是否正確?若正確,請?jiān)谙旅鏅M線中寫出解題過程中主要用到的思想方法;若不正確,請?jiān)谙旅鏅M線中寫出你認(rèn)為本題正確的結(jié)果. .
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com