8天堂资源在线,国产成人久久av免费高潮,国产精品亚洲综合色区韩国,国产欧美va天堂在线观看视频,xx色综合

(Ⅲ)求該同學獲得獎金額的數(shù)學期望E. 查看更多

 

題目列表(包括答案和解析)

某超市在節(jié)日期間進行有獎促銷,規(guī)定凡在該超市購物滿400元的顧客,均可獲得一次摸獎機會.摸獎規(guī)則如下:
獎盒中放有除顏色不同外其余完全相同的4個球(紅、黃、黑、白).顧客不放回的每次摸出1個球,若摸到黑球則摸獎停止,否則就繼續(xù)摸球.按規(guī)定摸到紅球獎勵20元,摸到白球或黃球獎勵10元,摸到黑球不獎勵.
(1)求1名顧客摸球2次摸獎停止的概率;
(2)記為1名顧客摸獎獲得的獎金數(shù)額,求隨機變量的分布列和數(shù)學期望.

查看答案和解析>>

某超市在節(jié)日期間進行有獎促銷,規(guī)定凡在該超市購物滿400元的顧客,均可獲得一次摸獎機會.摸獎規(guī)則如下:
獎盒中放有除顏色不同外其余完全相同的4個球(紅、黃、黑、白).顧客不放回的每次摸出1個球,若摸到黑球則摸獎停止,否則就繼續(xù)摸球.按規(guī)定摸到紅球獎勵20元,摸到白球或黃球獎勵10元,摸到黑球不獎勵.
(1)求1名顧客摸球2次摸獎停止的概率;
(2)記為1名顧客摸獎獲得的獎金數(shù)額,求隨機變量的分布列和數(shù)學期望.

查看答案和解析>>

(本小題滿分13分)

某品牌專賣店準備在春節(jié)期間舉行促銷活動,根據(jù)市場調(diào)查,該店決定從種型號的洗衣機,種型號的電視機和種型號的電腦中,選出種型號的商品進行促銷.

(Ⅰ)試求選出的種型號的商品中至少有一種是電腦的概率;

(Ⅱ)該店對選出的商品采用的促銷方案是有獎銷售,即在該商品現(xiàn)價的基礎(chǔ)上將價格提高元,同時,若顧客購買該商品,則允許有次抽獎的機會,若中獎,則每次中獎都獲得元獎金.假設(shè)顧客每次抽獎時獲獎與否的概率都是,設(shè)顧客在三次抽獎中所獲得的獎金總額(單位:元)為隨機變量,請寫出的分布列,并求的數(shù)學期望;

(Ⅲ)在(Ⅱ)的條件下,問該店若想采用此促銷方案獲利,則每次中獎獎金要低于多少元?

查看答案和解析>>

某超市在節(jié)日期間進行有獎促銷,凡在該超市購物滿200元的顧客,將獲得一次摸獎機會,規(guī)則如下:
獎盒中放有除顏色外完全相同的1個紅色球,1個黃色球,1個藍色球和1個黑色球.顧客不放回的每次摸出1個球,直至摸到黑色球停止摸獎.規(guī)定摸到紅色球獎勵10元,摸到黃色球或藍色球獎勵5元,摸到黑色球無獎勵.
(1)求一名顧客摸球3次停止摸獎的概率;
(2)記X為一名顧客摸獎獲得的獎金數(shù)額,求隨機變量X的分布列和數(shù)學期望.

查看答案和解析>>

某超市在節(jié)日期間進行有獎促銷,凡在該超市購物滿400元的顧客,將獲得一次摸獎機會,規(guī)則如下:獎盒中放有除顏色外完全相同的1個紅球,1個黃球,1個白球和1個黑球.顧客不放回的每次摸出1個球,若摸到黑球則停止摸獎,否則就繼續(xù)摸球.規(guī)定摸到紅球獎勵20元,摸到白球或黃球獎勵10元,摸到黑球不獎勵.
(1)求1名顧客摸球2次停止摸獎的概率;
(2)記為1名顧客摸獎獲得的獎金數(shù)額,求隨機變量的分布律和數(shù)學期望.

查看答案和解析>>

 

一、選擇題

AACCD   BBDDD   AC

二、填空題

13.    14.6    15.①⑤    16.

三、解答題

17.解:(Ⅰ)因為

由正弦定理,得,              ……3分

整理,得

因為、的三內(nèi)角,所以,    

因此  .                                                 ……6分

    <cite id="gj64d"></cite>
    <blockquote id="gj64d"></blockquote>
    <style id="gj64d"></style>
  • 20090520

    由余弦定理,得,所以,      ……10分

    解方程組,得 .                       ……12分

    18.解:記 “過第一關(guān)”為事件A,“第一關(guān)第一次過關(guān)”為事件A1,“第一關(guān)第二次過關(guān)”為事件A2;“過第二關(guān)”為事件B, “第二關(guān)第一次過關(guān)”為事件B1,“第二關(guān)第二次過關(guān)”為事件B2;

    (Ⅰ)該同學獲得900元獎金,即該同學順利通過第一關(guān),但未通過第二關(guān),則所求概率為

    .              ……………………………3分

    (Ⅱ)該同學通過第一關(guān)的概率為:

    , ……………………5分

    該同學通過第一、二關(guān)的概率為:

             

    ,   ………………………7分

     ∴ 在該同學已順利通過第一關(guān)的條件下,他獲3600元獎金的概率是

    .     ………………………………………………………8分

    (Ⅲ)該同學獲得獎金額可能取值為:0 元,900 元, 3600 元.………9分

     ,  ……………………………10分    

    , 

    ,         

    (另解:=1-

           ∴  . ……12分

    19.(本題滿分12分)

    解: (Ⅰ)當中點時,有∥平面.…1分

    證明:連結(jié)連結(jié),

    ∵四邊形是矩形  ∴中點

    ∥平面,

    平面,平面

    ,------------------4分

    的中點.------------------5分

    (Ⅱ)建立空間直角坐標系如圖所示,

    ,,,

    , ------------7分

    所以

    設(shè)為平面的法向量,

    則有,

    ,可得平面的一個

    法向量為,              ----------------9分

    而平面的法向量為,    ---------------------------10分

    所以,

    所以二面角的余弦值為----------------------------12分

    學科網(wǎng)(Zxxk.Com)20.(Ⅰ)設(shè)橢圓C的方程為,

    則由題意知

    ∴橢圓C的方程為      ……………………4分

    (Ⅱ)假設(shè)右焦點可以為的垂心,

    ,∴直線的斜率為

    從而直線的斜率為1.設(shè)其方程為, …………………………………5分

    聯(lián)立方程組,

    整理可得:   ……………6分.

           ,∴

    設(shè),則,

    .……………7分

           于是

          

    解之得.    ……………10分

    時,點即為直線與橢圓的交點,不合題意;

    時,經(jīng)檢驗知和橢圓相交,符合題意.

    所以,當且僅當直線的方程為時,

    的垂心.…………12分  

    21.解:(Ⅰ)的導數(shù)

    ,解得;令,

    解得.………………………2分

    從而內(nèi)單調(diào)遞減,在內(nèi)單調(diào)遞增.

    所以,當時,取得最小值.……………………………5分

    (II)因為不等式的解集為P,且

    所以,對任意的,不等式恒成立,……………………………6分

    ,得

    時,上述不等式顯然成立,故只需考慮的情況!7分

    變形為  ………………………………………………8分

    ,則

           令,解得;令

    解得.…………………………10分

           從而內(nèi)單調(diào)遞減,在內(nèi)單調(diào)遞增.

    所以,當時,

    取得最小值,從而,

    所求實數(shù)的取值范圍是.………………12分

    22.解:(Ⅰ)當時,    

      (Ⅱ)在中,

      在中,,

    時,中第項是,

    中的第項是

    所以中第項與中的第項相等.

    時,中第項是

    中的第項是,

    所以中第項與中的第項相等.

      ∴ 

    (Ⅲ)

      

    +

    當且僅當,等號成立.

    ∴當時,最。