8天堂资源在线,国产成人久久av免费高潮,国产精品亚洲综合色区韩国,国产欧美va天堂在线观看视频,xx色综合

(Ⅰ)求證:PC⊥AC,(Ⅱ)求二面角B-AP-C的大小,(Ⅲ)求點C到平面APB的距離. 得 分評分人 甲.乙等五名奧運志愿者被隨機地分到A.B.C.D四個不同的歲位服務.每上崗位至少有一名志愿者. (Ⅰ)求甲.乙兩人同時參加A崗位服務的概率,(Ⅱ)求甲.乙兩人不在同一個崗位服務的概率,(Ⅲ)設隨機變量ξ為這五名志愿者中參加A崗位服務的人數(shù).求ξ的分布列. 得 分評分人 查看更多

 

題目列表(包括答案和解析)

(2013•和平區(qū)一模)如圖,PC⊥平面ABC,DA∥PC,∠ACB=90°,E為PB的中點,AC=AD=BC=1,PC=2.
(I)求證:DE∥平面ABC:
(II)求證:PD⊥平面BCD;
(III)設Q為PB上一點,
PQ
PB
,試確定λ的值使得二面角Q-CD-B為45°.

查看答案和解析>>

(2008•湖北模擬)如圖,直二面角E-AB-C中,四邊形ABEF是矩形,AB=2,AF=2
3
,△ABC是以A為直角頂點的等腰直角三角形,點P是線段BF上的一個動點.
(1)若PB=PF,求異面直線PC與AB所成的角的余弦值;
(2)若二面角P-AC-B的大小為300,求證:FB⊥平面PAC.

查看答案和解析>>

精英家教網(wǎng)如圖,三棱錐P-ABC中,PC⊥平面ABC,PC=AC=2,AB=BC,D是PB上一點,且CD⊥平面PAB.
(1)求證:AB⊥平面PCB;
(2)求二面角C-PA-B的大小的余弦值.

查看答案和解析>>

精英家教網(wǎng)如圖,三棱錐P-ABC中,PC⊥平面ABC,PC=AC=2,AB=BC,D是PB上一點,且CD⊥平面PAB.
( I) 求證:AB⊥平面PCB;
(II) 求異面直線AP與BC所成角的大。
(Ⅲ)求二面角C-PA-B的正弦值.

查看答案和解析>>

如圖,三棱錐P-ABC中,PC⊥平面ABC,PC=AC=2,AB=BC,D是PB上一點,且CD⊥平面PAB
(Ⅰ)求證:AB⊥平面PCB;
(Ⅱ)求二面角C-PA-B的大小的正弦值.

查看答案和解析>>

一、選擇題(本大題共8小題,每小題5分,共40分)

1.D      2.A      3.B       4.D      5.B       6.C       7.C       8.B

二、填空題(本大題共6小題,每小題5分,共30分)

9.           10.           11.5      10           12.            

13.②           14. 

三、解答題(本大題共6小題,共80分)

15.(共13分)

解:(Ⅰ)

因為函數(shù)的最小正周期為,且,

所以,解得

(Ⅱ)由(Ⅰ)得

因為,

所以

所以,

因此,即的取值范圍為

16.(共14分)

解法一:

(Ⅰ)取中點,連結(jié)

,

,

平面

平面,

(Ⅱ),

,即,且,

平面

中點.連結(jié)

,

在平面內(nèi)的射影,

是二面角的平面角.

中,,,,

二面角的大小為

(Ⅲ)由(Ⅰ)知平面,

平面平面

,垂足為

平面平面

平面

的長即為點到平面的距離.

由(Ⅰ)知,又,且,

平面

平面,

中,,,

到平面的距離為

解法二:

(Ⅰ)

,

,

平面

平面,

(Ⅱ)如圖,以為原點建立空間直角坐標系

,

,

中點,連結(jié)

,,

,

是二面角的平面角.

,

二面角的大小為

(Ⅲ),

在平面內(nèi)的射影為正的中心,且的長為點到平面的距離.

如(Ⅱ)建立空間直角坐標系

,

的坐標為

到平面的距離為

17.(共13分)

解:(Ⅰ)記甲、乙兩人同時參加崗位服務為事件,那么

即甲、乙兩人同時參加崗位服務的概率是

(Ⅱ)記甲、乙兩人同時參加同一崗位服務為事件,那么,

所以,甲、乙兩人不在同一崗位服務的概率是

(Ⅲ)隨機變量可能取的值為1,2.事件“”是指有兩人同時參加崗位服務,

所以,的分布列是

1

3

 

18.(共13分)

解:

,得

,即時,的變化情況如下表:

0

,即時,的變化情況如下表:

0

所以,當時,函數(shù)上單調(diào)遞減,在上單調(diào)遞增,

上單調(diào)遞減.

時,函數(shù)上單調(diào)遞減,在上單調(diào)遞增,在上單調(diào)遞減.

,即時,,所以函數(shù)上單調(diào)遞減,在上單調(diào)遞減.

19.(共14分)

解:(Ⅰ)由題意得直線的方程為

因為四邊形為菱形,所以

于是可設直線的方程為

因為在橢圓上,

所以,解得

兩點坐標分別為

,,

所以

所以的中點坐標為

由四邊形為菱形可知,點在直線上,

所以,解得

所以直線的方程為,即

(Ⅱ)因為四邊形為菱形,且

所以

所以菱形的面積

由(Ⅰ)可得,

所以

所以當時,菱形的面積取得最大值

20.(共13分)

(Ⅰ)解:

,

,

(Ⅱ)證明:設每項均是正整數(shù)的有窮數(shù)列,

,,

從而

,

所以

同步練習冊答案