在平面直角坐標(biāo)系xOy中,拋物線y=ax
2+bx+c與x軸交于A、B兩點(點A在點B的左側(cè)),與y軸交于點C,點A的坐標(biāo)為(-3,0),若將經(jīng)過A、C兩點的直線y=kx+

b沿y軸向下平移3個單位后恰好經(jīng)過原點,且拋物線的對稱軸是直線x=-2.
(1)求直線AC及拋物線的函數(shù)表達(dá)式;
(2)如果P是線段AC上一點,設(shè)△ABP、△BPC的面積分別為S
△ABP、S
△BPC,且S
△ABP:S
△BPC=2:3,求點P的坐標(biāo);
(3)設(shè)⊙Q的半徑為1,圓心Q在拋物線上運動,則在運動過程中是否存在⊙Q與坐標(biāo)軸相切的情況?若存在,求出圓心Q的坐標(biāo);若不存在,請說明理由.并探究:若設(shè)⊙Q的半徑為r,圓心Q在拋物線上運動,則當(dāng)r取何值時,⊙Q與兩坐軸同時相切.