奧地利數(shù)學(xué)家皮克發(fā)現(xiàn)了一個計(jì)算正方形網(wǎng)格紙中多邊形面積的公式:
S=a+
b-1,方格紙中每個小正方形的邊長為1,其中a表示多邊形內(nèi)部的格點(diǎn)數(shù),b表示多邊形邊界上的格點(diǎn)數(shù),S表示多邊形的面積.
注:①由n條線段依次首尾連接而成的封閉圖形叫做n邊形,這些線段的端點(diǎn)叫做頂點(diǎn);
②網(wǎng)格中小正方形的頂點(diǎn)叫格點(diǎn).
如:在圖①中,點(diǎn)A、B、C、D都正好在格點(diǎn)上,那么四邊形ABCD的面積S=8+
×4-1=9.
運(yùn)用上述知識回答:

(1)如圖②中,求四邊形ABCD的面積;
(2)如圖③、④、⑤,若多邊形的頂點(diǎn)都在格點(diǎn)上,且面積為6,請畫出這樣三個形狀不同的多邊形(多邊形的邊數(shù)≥6).并寫出相應(yīng)的a、b的值.
a=
3
3
; a=
1
1
; a=
3
3
;
b=
8
8
.b=
12
12
.b=
8
8
.