題目列表(包括答案和解析)
閱讀下面材料,解答提出的問題.
三角形的三條中線交于一點,這點叫做三角形的重心.三角形的重心與頂點的距離等于它與對邊中點距離的兩倍.其證明如下:
如圖,在△ABC中,P是三條中線AD、BE、CF的交點,求證:PA=2PD.
證明:連結(jié)DE,∵AE=EC,BD=DC.
∴DE是△ABC的中位線.∴DE∥AB,2DE=AB.
∴=
=
.∴PA=2PD.
(1)寫出上述證明過程中用到的定理或推論;
(2)如下圖,已知P是△ABC的重心,G、Q分別是AP、BP的中點,QH∥BC交PC于點H,連結(jié)GH.求證:AC·PQ=GH·QE.
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com