如圖,在平面直角坐標系中的正方形ABCD的邊長為acm(a>2),B與坐標原點重合,邊AB在y軸正半軸,動點P從點B出發(fā),以2cm/s的速度沿B→C→D方向,向點D運動;動點Q從點A出發(fā),以1cm/s的速度沿A→B方向,向點B運動,設(shè)P,Q兩點同時出發(fā),運動時間為ts.
(1)若t=1時,△BPQ的面積為3cm
2,則a的值為多少?
(2)在(1)的條件下,以點P為圓心,作⊙P,使得⊙P與對角線BD相切如圖(b)所示,問:當點P在CD上動動時,是否存在這樣的t,使得⊙P恰好經(jīng)過正方形ABCD的某一邊的中點?若存在,請寫出符合條件的t的值并直接寫出直線PQ解析式(其中一種情形需有計算過程,其余的只要直接寫出答案);若不存在,請說明理由.
(3)在(1)的條件下,且
t<,點P在BC上運動時,△PQD是以PD為一腰的等腰三角形,在直線BD上找一點E,在x軸上找一點F,是否存在以E,F(xiàn),P,Q為頂點的平行四邊形?若存在,求出E,F(xiàn)兩點坐標;若不存在,請說明理由.
