題目列表(包括答案和解析)
命題方程
有兩個(gè)不等的正實(shí)數(shù)根,
命題
方程
無實(shí)數(shù)根。若“
或
”為真命題,求
的取值范圍。
【解析】本試題主要考查了命題的真值問題,以及二次方程根的綜合運(yùn)用。
解:“p或q”為真命題,則p為真命題,或q為真命題,或q和p都是真命題
當(dāng)p為真命題時(shí),則,得
;
當(dāng)q為真命題時(shí),則
當(dāng)q和p都是真命題時(shí),得
已知,函數(shù)
(1)當(dāng)時(shí),求函數(shù)
在點(diǎn)(1,
)的切線方程;
(2)求函數(shù)在[-1,1]的極值;
(3)若在上至少存在一個(gè)實(shí)數(shù)x0,使
>g(xo)成立,求正實(shí)數(shù)
的取值范圍。
【解析】本試題中導(dǎo)數(shù)在研究函數(shù)中的運(yùn)用。(1)中,那么當(dāng)
時(shí),
又
所以函數(shù)
在點(diǎn)(1,
)的切線方程為
;(2)中令
有
對a分類討論,和
得到極值。(3)中,設(shè)
,
,依題意,只需
那么可以解得。
解:(Ⅰ)∵ ∴
∴ 當(dāng)時(shí),
又
∴ 函數(shù)在點(diǎn)(1,
)的切線方程為
--------4分
(Ⅱ)令 有
①
當(dāng)即
時(shí)
|
(-1,0) |
0 |
(0, |
|
( |
|
+ |
0 |
- |
0 |
+ |
|
|
極大值 |
|
極小值 |
|
故的極大值是
,極小值是
②
當(dāng)即
時(shí),
在(-1,0)上遞增,在(0,1)上遞減,則
的極大值為
,無極小值。
綜上所述 時(shí),極大值為
,無極小值
時(shí) 極大值是
,極小值是
----------8分
(Ⅲ)設(shè),
對求導(dǎo),得
∵,
∴ 在區(qū)間
上為增函數(shù),則
依題意,只需,即
解得 或
(舍去)
則正實(shí)數(shù)的取值范圍是(
,
)
有下列命題:
①已知a,b為實(shí)數(shù),若a2-4b≥0,則x2+ax+b≤0有非空實(shí)數(shù)解集.
②當(dāng)2m-1>0時(shí),如果>0,那么m>-4.
③若a,b是整數(shù),則關(guān)于x的方程x2+ax+b=0有兩整數(shù)根.
④若a、b都不是整數(shù),則方程x2+ax+b=0無兩整數(shù)根.
⑤當(dāng)2m-1>0時(shí),如果m≤-4,則≤0.
⑥已知a,b為實(shí)數(shù),若x2+ax+b≤0有非空實(shí)數(shù)解,則a2-4b≥0.
⑦若方程x2+ax+b=0沒有兩整數(shù)根,則a不是整數(shù)或b不是整數(shù).
⑧已知a、b為實(shí)數(shù),若a2-4b<0,則關(guān)于x的不等式x2+ax+b≤0的解集為空集.
⑨當(dāng)2m-1>0時(shí),如果m>-4,則>0.
用序號表示上述命題間的關(guān)系(例(1)與(9)互為逆否命題):其中(1)___________是互為逆命題;(2)___________互為否命題;(3)___________互為逆否命題
①已知a,b為實(shí)數(shù),若a2-4b≥0,則x2+ax+b≤0有非空實(shí)數(shù)解集.
②當(dāng)2m-1>0時(shí),如果>0,那么m>-4.
③若a,b是整數(shù),則關(guān)于x的方程x2+ax+b=0有兩整數(shù)根.
④若a、b都不是整數(shù),則方程x2+ax+b=0無兩整數(shù)根.
⑤當(dāng)2m-1>0時(shí),如果m≤-4,則≤0.
⑥已知a,b為實(shí)數(shù),若x2+ax+b≤0有非空實(shí)數(shù)解,則a2-4b≥0.
⑦若方程x2+ax+b=0沒有兩整數(shù)根,則a不是整數(shù)或b不是整數(shù).
⑧已知a、b為實(shí)數(shù),若a2-4b<0,則關(guān)于x的不等式x2+ax+b≤0的解集為空集.
⑨當(dāng)2m-1>0時(shí),如果m>-4,則>0.
用序號表示上述命題間的關(guān)系(例(1)與(9)互為逆否命題):其中(1)___________是互為逆命題;(2)___________互為否命題;(3)___________互為逆否命題
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com