8天堂资源在线,国产成人久久av免费高潮,国产精品亚洲综合色区韩国,国产欧美va天堂在线观看视频,xx色综合

5.在正四面體P―ABC中.D.E.F分別是AB.BC.CA的中點(diǎn).下面四個(gè)結(jié)論中不成立 的是 A.BC//平面PDF B.DF⊥平面PAE C.平面PDF⊥平面ABC D.平面PAE⊥平面ABC 查看更多

 

題目列表(包括答案和解析)

在正四面體P—ABC中,D、E、F分別是AB、BC、CA的中點(diǎn),下面四個(gè)結(jié)論中不成立的是(    )

A.BC∥平面PDF                                B.DF⊥平面PAE

C.平面PDF⊥平面ABC                        D.平面PAE⊥平面ABC

查看答案和解析>>

在正四面體PABC中,D、E、F分別是AB、BC、CA的中點(diǎn),下列四個(gè)結(jié)論中不成立的是(     )

  A.BC//平面PDF                     B.DF平面PAE

C.平面PDF平面ABC             D.平面PAE平面ABC

 

查看答案和解析>>

在正四面體PABC中,D、E、F分別是AB、BCCA的中點(diǎn),下列四個(gè)結(jié)論中不成立的是(     )

  A.BC//平面PDF                     B.DF平面PAE

C.平面PDF平面ABC             D.平面PAE平面ABC

 

查看答案和解析>>

在正四面體P-ABC中,D、E、F分別是AB、BC、CA的中點(diǎn),下面四個(gè)結(jié)論中不

正確的是(    )

A. BC//平面PDF         B.  DF⊥平面PAE

C. 平面PDF⊥平面ABC   D.  平面PAE⊥平面ABC

 

查看答案和解析>>

在正四面體P-ABC中,D、E、F分別是AB、BC、CA的中點(diǎn),下面四個(gè)結(jié)論中不成立的是                  

A.BC平面PDF                                           B.DF⊥平面PAE    

C.平面PDF⊥平面ABC  D.平面PAE⊥平面ABC

查看答案和解析>>

 

第Ⅰ卷(選擇題  共60分)

一、選擇題

    20080422

    第Ⅱ卷(非選擇題  共90分)

    二、填空題

    13.2    14.3   15.   16.①③④

    三、解答題

    17.解:(1)由正弦定理得,…………………………………….….3分

       ,,因此。…….6分

    (2)的面積,,………..8分

    ,所以由余弦定理得….10分

    !.12分

    文本框:  18.方法一:                

    (1)證明:連結(jié)BD,

    ∵D分別是AC的中點(diǎn),PA=PC=

    ∴PD⊥AC,

    ∵AC=2,AB=,BC=

    ∴AB2+BC2=AC2,

    ∴∠ABC=90°,即AB⊥BC.…………2分

    ∴BD=,

    ∵PD2=PA2―AD2=3,PB

    ∴PD2+BD2=PB2,

    ∴PD⊥BD,

    ∵ACBD=D

    ∴PD⊥平面ABC.…………………………4分

    (2)解:取AB的中點(diǎn)E,連結(jié)DE、PE,由E為AB的中點(diǎn)知DE//BC,

    ∵AB⊥BC,

    ∴AB⊥DE,

    ∵DE是直線PE的底面ABC上的射景

    ∴PE⊥AB

    ∴∠PED是二面角P―AB―C的平面角,……………………6分

    在△PED中,DE=∠=90°,

    ∴tan∠PDE=

    ∴二面角P―AB―C的大小是

    (3)解:設(shè)點(diǎn)E到平面PBC的距離為h.

    ∵VP―EBC=VE―PBC,

    ……………………10分

    在△PBC中,PB=PC=,BC=

    而PD=

    ∴點(diǎn)E到平面PBC的距離為……………………12分

    方法二:

    (1)同方法一:

    (2)解:解:取AB的中點(diǎn)E,連結(jié)DE、PE,

    過(guò)點(diǎn)D作AB的平行線交BC于點(diǎn)F,以D為

    <sub id="exgtb"></sub>

        <cite id="exgtb"><track id="exgtb"></track></cite>
          • DP為z軸,建立如圖所示的空間直角坐標(biāo)系.

            則D(0,0,0),P(0,0,),

            E(),B=(

            設(shè)上平面PAB的一個(gè)法向量,

            則由

            這時(shí),……………………6分

            顯然,是平面ABC的一個(gè)法向量.

            ∴二面角P―AB―C的大小是……………………8分

            (3)解:

            設(shè)平面PBC的一個(gè)法向量,

            是平面PBC的一個(gè)法向量……………………10分

            ∴點(diǎn)E到平面PBC的距離為………………12分

            19.解:

            20.解(1)由已知,拋物線,焦點(diǎn)F的坐標(biāo)為F(0,1)………………1分

            當(dāng)l與y軸重合時(shí),顯然符合條件,此時(shí)……………………3分

            當(dāng)l不與y軸重合時(shí),要使拋物線的焦點(diǎn)F與原點(diǎn)O到直線l的距離相等,當(dāng)且僅當(dāng)直線l通過(guò)點(diǎn)()設(shè)l的斜率為k,則直線l的方程為

            由已知可得………5分

            解得無(wú)意義.

            因此,只有時(shí),拋物線的焦點(diǎn)F與原點(diǎn)O到直線l的距離相等.……7分

            (2)由已知可設(shè)直線l的方程為……………………8分

            則AB所在直線為……………………9分

            代入拋物線方程………………①

            的中點(diǎn)為

            代入直線l的方程得:………………10分

            又∵對(duì)于①式有:

            解得m>-1,

            l在y軸上截距的取值范圍為(3,+)……………………12分

            21.解:(1)在………………1分

            當(dāng)兩式相減得:

            整理得:……………………3分

            當(dāng)時(shí),,滿足上式,

            (2)由(1)知

            ………………8分

            ……………………………………………12分

            22.解:(1)…………………………1分

            是R上的增函數(shù),故在R上恒成立,

            在R上恒成立,……………………2分

            …………3分

            故函數(shù)上單調(diào)遞減,在(-1,1)上單調(diào)遞增,在(1,+)上單調(diào)遞減!5分

            ∴當(dāng)

            的最小值………………6分

            亦是R上的增函數(shù)。

            故知a的取值范圍是……………………7分

            (2)……………………8分

            ①當(dāng)a=0時(shí),上單調(diào)遞增;…………10分

            可知

            ②當(dāng)

            即函數(shù)上單調(diào)遞增;………………12分

            ③當(dāng)時(shí),有,

            即函數(shù)上單調(diào)遞增!14分