題目列表(包括答案和解析)
以為焦點且與直線
有公共點的橢圓中,離心率最大的橢圓方程是 。
以為焦點且與直線
有公共點的橢圓中,離心率最大的橢圓方程是_________
4 |
5 |
x2 |
a2 |
y2 |
b2 |
已知橢圓,拋物線
的焦點均在
軸上,
的中心和
的頂點均為原點
,每條曲線上取兩個點,將其坐標(biāo)記錄于表中:
|
|
|
|
|
|
|
|
|
|
(1)求,
的標(biāo)準(zhǔn)方程;
(2)設(shè)斜率不為0的動直線與
有且只有一個公共點
,且與
的準(zhǔn)線交于
,試探究:在坐標(biāo)平面內(nèi)是否存在定點
,使得以
為直徑的圓恒過點
?若存在,求出
點的坐標(biāo),若不存在,請說明理由.
已知橢圓的離心率為
,直線
與以原點為圓心,以橢圓
的短半軸長為半徑的圓
相切.
(1)求橢圓的方程;
(2)拋物線與橢圓
有公共焦點,設(shè)
與
軸交于點
,不同的兩點
、
在
上(
、
與
不重合),且滿足
,求
的取值范圍.
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com