8天堂资源在线,国产成人久久av免费高潮,国产精品亚洲综合色区韩国,国产欧美va天堂在线观看视频,xx色综合

20.(本題滿分22分.第1小題4分.第2小題6分.第3小題12分)定義:將一個數列中部分項按原來的先后次序排列所成的一個新數列稱為原數列的一個子數列. 查看更多

 

題目列表(包括答案和解析)

(本小題滿分12分)

在一次數學考試中,第21題和第22題為選做題. 規(guī)定每位考生必須且只須在其中選做一題. 設4名考生選做每一道題的概率均為.

(1)求其中甲、乙兩名學生選做同一道題的概率;

(2)設這4名考生中選做第22題的學生個數為,求的概率分布及數學期望. 的解析

 

查看答案和解析>>

(本小題滿分12分)

在一次數學考試中,第21題和第22題為選做題. 規(guī)定每位考生必須且只須在其中選做一題. 設4名考生選做這兩題的可能性均為.

(1)求其中甲、乙二名學生選做同一道題的概率;

(2)設這4名考生中選做第22題的學生個數為,求的概率分布及數學期望.

 

查看答案和解析>>

(本小題滿分12分)
在一次數學考試中,第21題和第22題為選做題. 規(guī)定每位考生必須且只須在其中選做一題. 設4名考生選做每一道題的概率均為.
(1)求其中甲、乙兩名學生選做同一道題的概率;
(2)設這4名考生中選做第22題的學生個數為,求的概率分布及數學期望. 的解析

查看答案和解析>>

(本小題滿分14分)

在一次數學考試中,第21題和第22題為選做題,規(guī)定每位考生必須且只須在其中選做一題.設每位考生選做每一題的可能性均為

(1)求甲、乙兩名學生選做同一道題的概率;

(2)設4名考生中選做第22題的學生個數為,求的概率分布及數學期望.

查看答案和解析>>

選做題(本小題滿分10分,請考生在第22、23、24三題中任選一題作答。如果多做,則按所做的第一題計分,作答時請在答題紙上所選題目的方框內打“√”。
22.選修4-1:幾何證明選講。
如圖,是圓的直徑,是弦,的平分線交圓于點,,交的延長線于點,于點。
(1)求證:是圓的切線;
(2)若,求的值。

查看答案和解析>>

一、填空題:(5’×11=55’)

題號

1

2

3

4

5

6

答案

0

(1,2)

2

題號

7

8

9

10

11

 

答案

4

8.3

②、③

 

二、選擇題:(4’×4=16’)

題號

12

13

14

15

答案

A

C

B

    <big id="xz1zd"></big>
        • <menuitem id="xz1zd"><sup id="xz1zd"></sup></menuitem>
          <center id="xz1zd"></center>
          • <ruby id="xz1zd"><samp id="xz1zd"></samp></ruby>

            20090116

            三、解答題:(12’+14’+15’+16’+22’=79’)

            16.解:由條件,可得,故左焦點的坐標為

            為橢圓上的動點,由于橢圓方程為,故

            因為,所以

            ,

            由二次函數性質可知,當時,取得最小值4.

            所以,的模的最小值為2,此時點坐標為

            17.解:(1)當時,

            時,;

            時,;(不單獨分析時的情況不扣分)

            時,

            (2)由(1)知:當時,集合中的元素的個數無限;

            時,集合中的元素的個數有限,此時集合為有限集.

            因為,當且僅當時取等號,

            所以當時,集合的元素個數最少.

            此時,故集合

            18.(本題滿分15分,1小題6分,第2小題9

            解:

             

             

             

             

             

             

             

             

             

             

             

             

             

             

             

             (2)解:如圖所示.由,,則

            所以,四棱錐的體積為

            19.解:(1)根據三條規(guī)律,可知該函數為周期函數,且周期為12.

            由此可得,;

            由規(guī)律②可知,,

            ;

            又當時,,

            所以,,由條件是正整數,故取

                綜上可得,符合條件.

            (2) 解法一:由條件,,可得

            ,

            ,

            因為,所以當時,

            ,即一年中的7,8,9,10四個月是該地區(qū)的旅游“旺季”.

            解法二:列表,用計算器可算得

            月份

            6

            7

            8

            9

            10

            11

            人數

            383

            463

            499

            482

            416

            319

            故一年中的7,8,9,10四個月是該地區(qū)的旅游“旺季”.

            20.解:(1)依條件得: 則無窮等比數列各項的和為:

                 ;

              (2)解法一:設此子數列的首項為,公比為,由條件得:,

            ,即    

             則 .

            所以,滿足條件的無窮等比子數列存在且唯一,它的首項、公比均為

            其通項公式為,.

            解法二:由條件,可設此子數列的首項為,公比為

            ………… ①

            又若,則對每一

            都有………… ②

            從①、②得

            ;

            因而滿足條件的無窮等比子數列存在且唯一,此子數列是首項、公比均為無窮等比子

            數列,通項公式為,

            (3)以下給出若干解答供參考,評分方法參考本小題閱卷說明:

            問題一:是否存在數列的兩個不同的無窮等比子數列,使得它們各項的和互為倒數?若存在,求出所有滿足條件的子數列;若不存在,說明理由.

            解:假設存在原數列的兩個不同的無窮等比子數列,使它們的各項和之積為1。設這兩個子數列的首項、公比分別為,其中,則

            因為等式左邊或為偶數,或為一個分數,而等式右邊為兩個奇數的乘積,還是一個奇數。故等式不可能成立。所以這樣的兩個子數列不存在。

            【以上解答屬于層級3,可得設計分4分,解答分6分】

            問題二:是否存在數列的兩個不同的無窮等比子數列,使得它們各項的和相等?若存在,求出所有滿足條件的子數列;若不存在,說明理由.

            解:假設存在原數列的兩個不同的無窮等比子數列,使它們的各項和相等。設這兩個子數列的首項、公比分別為,其中,則

            ………… ①

            ,則①,矛盾;若,則①

            ,矛盾;故必有,不妨設,則

            ………… ②

            1時,②,等式左邊是偶數,

            右邊是奇數,矛盾;

            2時,②

            兩個等式的左、右端的奇偶性均矛盾;

            綜合可得,不存在原數列的兩個不同的無窮等比子數列,使得它們的各項和相等。

            【以上解答屬于層級4,可得設計分5分,解答分7分】

            問題三:是否存在原數列的兩個不同的無窮等比子數列,使得其中一個數列的各項和等于另一個數列的各項和的倍?若存在,求出所有滿足條件的子數列;若不存在,說明理由.

            解:假設存在滿足條件的原數列的兩個不同的無窮等比子數列。設這兩個子數列的首項、公比分別為,其中,則

            ,

            顯然當時,上述等式成立。例如取,得:

            第一個子數列:,各項和;第二個子數列:

            各項和,有,因而存在原數列的兩個不同的無窮等比子數列,使得其中一個數列的各項和等于另一個數列的各項和的倍。

            【以上解答屬層級3,可得設計分4分,解答分6分.若進一步分析完備性,可提高一個層級評分】

            問題四:是否存在原數列的兩個不同的無窮等比子數列,使得其中一個數列的各項和等于另一個數列的各項和的倍?并說明理由.解(略):存在。

            問題五:是否存在原數列的兩個不同的無窮等比子數列,使得其中一個數列的各項和等于另一個數列的各項和的倍?并說明理由.解(略):不存在.

            【以上問題四、問題五等都屬于層級4的問題設計,可得設計分5分。解答分最高7分】