8天堂资源在线,国产成人久久av免费高潮,国产精品亚洲综合色区韩国,国产欧美va天堂在线观看视频,xx色综合

18.(本題滿分15分.第1小題6分.第2小題9分) 查看更多

 

題目列表(包括答案和解析)

(本題滿分13分)

某班幾位同學(xué)組成研究性學(xué)習(xí)小組,對歲的人群隨機(jī)抽取n人進(jìn)行了一次日常生活中是否

具有環(huán)保意識的調(diào)查. 若生活習(xí)慣具有環(huán)保意識的稱為“環(huán)保族”,否則稱為 “非環(huán)保族”,得到如下統(tǒng)計表:

組數(shù)

分組

環(huán)保族人數(shù)

占本組的頻率

本組占樣本的頻率

第一組

120

0.6

0.2

第二組

195

p

q

第三組

 100:]

0.5

0.2

第四組

a

0.4

0.15

第五組

30

0.3

0.1

第六組

15

0.3

0.05

(Ⅰ)求q、na、p的值;

(Ⅱ)從年齡段在的“環(huán)保族”中采用分層抽樣法抽取6人參加戶外環(huán);顒,其中選取2人

作為領(lǐng)隊(duì),求選取的2名領(lǐng)隊(duì)中恰有1人年齡在的概率.

查看答案和解析>>

(本小題滿分12分)
某高校從參加今年自主招生考試的學(xué)生中隨機(jī)抽取容量為50的學(xué)生成績樣本,得頻率分布表如下:

組號
分組
頻數(shù)
頻率
第一組

8
0.16
第二組


0.24
第三組

15

第四組

10
0.20
第五組

5
0.10
合             計
50
1.00
(1)寫出表中①②位置的數(shù)據(jù);
(2)為了選拔出更優(yōu)秀的學(xué)生,高校決定在第三、四、五組中用分層抽樣法抽取6名學(xué)生進(jìn)行第二輪考核,分別求第三、四、五各組參加考核人數(shù);
(3)在(2)的前提下,高校決定在這6名學(xué)生中錄取2名學(xué)生,求2人中至少有1名是第四組的概率.

查看答案和解析>>

(本小題滿分12分)

第8屆中學(xué)生模擬聯(lián)合國大會將在本校舉行,為了搞好接待工作,組委會招募了12名男志愿者和18名女志愿者.將這30名志愿者的身高編成如下莖葉圖(單位:cm):

                       男             女

                               15    7  7  8  9  9  9

9  8   16    0  0  1  2  4  5  8  9

8  6  5  0   17    2  5  6

7  4  2  1   18    0 

1  0   19

若男生身高在180cm以上(包括180cm)定義為“高個子”, 在180cm以下(不包括180cm)定義為“非高個子”, 女生身高在170cm以上(包括170cm)定義為“高個子”,在170cm以下(不包括170cm)定義為“非高個子”.

(1)如果用分層抽樣的方法從“高個子”和“非高個子”中抽取6人,則應(yīng)分別抽取“高個子”、“非高個子”各幾人?

(2)從(1)中抽出的6人中選2人擔(dān)任領(lǐng)座員,那么至少有一人是“高個子”的概率是多少?

 

查看答案和解析>>

(本小題滿分15分)

    在參加市里主辦的科技知識競賽的學(xué)生中隨機(jī)選取了40名學(xué)生的成績作為樣本,這40名學(xué)生的成績?nèi)吭?0分至100分之間,現(xiàn)將成績按如下方式分成6組:第一組,成績大于等于40分且小于50分;第二組,成績大于等于50分且小于60分;……第六組,成績大于等于90分且小于等于100分,據(jù)此繪制了如圖所示的頻率分布直方圖。

在選取的40名學(xué)生中。

   (I)求成績在區(qū)間內(nèi)的學(xué)生人數(shù);

   (II)從成績大于等于80分的學(xué)生中隨機(jī)選2名學(xué)生,求至少有1名學(xué)生成績在區(qū)間[90,100]內(nèi)的概率。

 

查看答案和解析>>

(本小題滿分12分)
第8屆中學(xué)生模擬聯(lián)合國大會將在本校舉行,為了搞好接待工作,組委會招募了12名男志愿者和18名女志愿者.將這30名志愿者的身高編成如下莖葉圖(單位:cm):
                       男             女
                               15    7  7  8  9  9  9
9  8   16    0  0  1  2  4  5  8  9
8  6  5  0   17    2  5  6
7  4  2  1   18    0 
1  0   19
若男生身高在180cm以上(包括180cm)定義為“高個子”, 在180cm以下(不包括180cm)定義為“非高個子”, 女生身高在170cm以上(包括170cm)定義為“高個子”,在170cm以下(不包括170cm)定義為“非高個子”.
(1)如果用分層抽樣的方法從“高個子”和“非高個子”中抽取6人,則應(yīng)分別抽取“高個子”、“非高個子”各幾人?
(2)從(1)中抽出的6人中選2人擔(dān)任領(lǐng)座員,那么至少有一人是“高個子”的概率是多少?

查看答案和解析>>

一、填空題:(5’×11=55’)

題號

1

2

3

4

5

6

答案

0

(1,2)

2

題號

7

8

9

10

11

 

答案

4

8.3

②、③

 

二、選擇題:(4’×4=16’)

題號

12

13

14

15

答案

A

C

B

<ruby id="qs7kn"><button id="qs7kn"></button></ruby>

    • <kbd id="qs7kn"></kbd>
      1. 20090116

        三、解答題:(12’+14’+15’+16’+22’=79’)

        16.解:由條件,可得,故左焦點(diǎn)的坐標(biāo)為

        設(shè)為橢圓上的動點(diǎn),由于橢圓方程為,故

        因?yàn)?sub>,所以

        ,

        由二次函數(shù)性質(zhì)可知,當(dāng)時,取得最小值4.

        所以,的模的最小值為2,此時點(diǎn)坐標(biāo)為

        17.解:(1)當(dāng)時,;

        當(dāng)時,;

        當(dāng)時,;(不單獨(dú)分析時的情況不扣分)

        當(dāng)時,

        (2)由(1)知:當(dāng)時,集合中的元素的個數(shù)無限;

        當(dāng)時,集合中的元素的個數(shù)有限,此時集合為有限集.

        因?yàn)?sub>,當(dāng)且僅當(dāng)時取等號,

        所以當(dāng)時,集合的元素個數(shù)最少.

        此時,故集合

        18.(本題滿分15分,1小題6分,第2小題9

        解:

         

         

         

         

         

         

         

         

         

         

         

         

         

         

         

         (2)解:如圖所示.由,,則

        所以,四棱錐的體積為

        19.解:(1)根據(jù)三條規(guī)律,可知該函數(shù)為周期函數(shù),且周期為12.

        由此可得,;

        由規(guī)律②可知,,

        ;

        又當(dāng)時,,

        所以,,由條件是正整數(shù),故取

            綜上可得,符合條件.

        (2) 解法一:由條件,,可得

        ,

        ,

        因?yàn)?sub>,,所以當(dāng)時,,

        ,即一年中的7,8,9,10四個月是該地區(qū)的旅游“旺季”.

        解法二:列表,用計算器可算得

        月份

        6

        7

        8

        9

        10

        11

        人數(shù)

        383

        463

        499

        482

        416

        319

        故一年中的7,8,9,10四個月是該地區(qū)的旅游“旺季”.

        20.解:(1)依條件得: 則無窮等比數(shù)列各項(xiàng)的和為:

             ;

          (2)解法一:設(shè)此子數(shù)列的首項(xiàng)為,公比為,由條件得:

        ,即    

         則 .

        所以,滿足條件的無窮等比子數(shù)列存在且唯一,它的首項(xiàng)、公比均為,

        其通項(xiàng)公式為,.

        解法二:由條件,可設(shè)此子數(shù)列的首項(xiàng)為,公比為

        ………… ①

        又若,則對每一

        都有………… ②

        從①、②得

        因而滿足條件的無窮等比子數(shù)列存在且唯一,此子數(shù)列是首項(xiàng)、公比均為無窮等比子

        數(shù)列,通項(xiàng)公式為,

        (3)以下給出若干解答供參考,評分方法參考本小題閱卷說明:

        問題一:是否存在數(shù)列的兩個不同的無窮等比子數(shù)列,使得它們各項(xiàng)的和互為倒數(shù)?若存在,求出所有滿足條件的子數(shù)列;若不存在,說明理由.

        解:假設(shè)存在原數(shù)列的兩個不同的無窮等比子數(shù)列,使它們的各項(xiàng)和之積為1。設(shè)這兩個子數(shù)列的首項(xiàng)、公比分別為,其中,則

        因?yàn)榈仁阶筮吇驗(yàn)榕紨?shù),或?yàn)橐粋分?jǐn)?shù),而等式右邊為兩個奇數(shù)的乘積,還是一個奇數(shù)。故等式不可能成立。所以這樣的兩個子數(shù)列不存在。

        【以上解答屬于層級3,可得設(shè)計分4分,解答分6分】

        問題二:是否存在數(shù)列的兩個不同的無窮等比子數(shù)列,使得它們各項(xiàng)的和相等?若存在,求出所有滿足條件的子數(shù)列;若不存在,說明理由.

        解:假設(shè)存在原數(shù)列的兩個不同的無窮等比子數(shù)列,使它們的各項(xiàng)和相等。設(shè)這兩個子數(shù)列的首項(xiàng)、公比分別為,其中,則

        ………… ①

        ,則①,矛盾;若,則①

        ,矛盾;故必有,不妨設(shè),則

        ………… ②

        1當(dāng)時,②,等式左邊是偶數(shù),

        右邊是奇數(shù),矛盾;

        2當(dāng)時,②

        ,

        兩個等式的左、右端的奇偶性均矛盾;

        綜合可得,不存在原數(shù)列的兩個不同的無窮等比子數(shù)列,使得它們的各項(xiàng)和相等。

        【以上解答屬于層級4,可得設(shè)計分5分,解答分7分】

        問題三:是否存在原數(shù)列的兩個不同的無窮等比子數(shù)列,使得其中一個數(shù)列的各項(xiàng)和等于另一個數(shù)列的各項(xiàng)和的倍?若存在,求出所有滿足條件的子數(shù)列;若不存在,說明理由.

        解:假設(shè)存在滿足條件的原數(shù)列的兩個不同的無窮等比子數(shù)列。設(shè)這兩個子數(shù)列的首項(xiàng)、公比分別為,其中,則

        顯然當(dāng)時,上述等式成立。例如取,,得:

        第一個子數(shù)列:,各項(xiàng)和;第二個子數(shù)列:

        各項(xiàng)和,有,因而存在原數(shù)列的兩個不同的無窮等比子數(shù)列,使得其中一個數(shù)列的各項(xiàng)和等于另一個數(shù)列的各項(xiàng)和的倍。

        【以上解答屬層級3,可得設(shè)計分4分,解答分6分.若進(jìn)一步分析完備性,可提高一個層級評分】

        問題四:是否存在原數(shù)列的兩個不同的無窮等比子數(shù)列,使得其中一個數(shù)列的各項(xiàng)和等于另一個數(shù)列的各項(xiàng)和的倍?并說明理由.解(略):存在。

        問題五:是否存在原數(shù)列的兩個不同的無窮等比子數(shù)列,使得其中一個數(shù)列的各項(xiàng)和等于另一個數(shù)列的各項(xiàng)和的倍?并說明理由.解(略):不存在.

        【以上問題四、問題五等都屬于層級4的問題設(shè)計,可得設(shè)計分5分。解答分最高7分】