題目列表(包括答案和解析)
解析:由題意知
當-2≤x≤1時,f(x)=x-2,
當1<x≤2時,f(x)=x3-2,
又∵f(x)=x-2,f(x)=x3-2在定義域上都為增函數,
∴f(x)的最大值為f(2)=23-2=6.
答案:C
(本小題滿分12分)
有一幅橢圓型彗星軌道圖,長4cm,高,如下圖,
已知O為橢圓中心,A1,A2是長軸兩端點,
|
(Ⅰ)建立適當的坐標系,寫出橢圓方程,
并求出當彗星運行到太陽正上方時二者在圖上的距離;
(Ⅱ)直線l垂直于A1A2的延長線于D點,|OD|=4,
設P是l上異于D點的任意一點,直線A1P,A2P分別
交橢圓于M、N(不同于A1,A2)兩點,問點A2能否
在以MN為直徑的圓上?試說明理由.
(本小題滿分16分)已知負數a和正數b,令a1=a,b1=b,且對任意的正整數k,當≥0時,有ak+1=ak,bk+1=;當<0,有ak+1 =,bk+1 = bk.(1)求bn-an關于n的表達式; (2)是否存在a,b,使得對任意的正整數n都有bn>bn+1?請說明理由.(3)若對任意的正整數n,都有b2n-1>b2n,且b2n=b2n+1,求bn的表達式.w.w.w.k.s.5.u.c.o.m
已知函數=
.
(Ⅰ)當時,求不等式
≥3的解集;
(Ⅱ) 若≤
的解集包含
,求
的取值范圍.
【命題意圖】本題主要考查含絕對值不等式的解法,是簡單題.
【解析】(Ⅰ)當時,
=
,
當≤2時,由
≥3得
,解得
≤1;
當2<<3時,
≥3,無解;
當≥3時,由
≥3得
≥3,解得
≥8,
∴≥3的解集為{
|
≤1或
≥8};
(Ⅱ) ≤
,
當∈[1,2]時,
=
=2,
∴,有條件得
且
,即
,
故滿足條件的的取值范圍為[-3,0]
已知函數(
為實數).
(Ⅰ)當時,求
的最小值;
(Ⅱ)若在
上是單調函數,求
的取值范圍.
【解析】第一問中由題意可知:. ∵
∴
∴
.
當時,
;
當
時,
. 故
.
第二問.
當時,
,在
上有
,
遞增,符合題意;
令,則
,∴
或
在
上恒成立.轉化后解決最值即可。
解:(Ⅰ) 由題意可知:. ∵
∴
∴
.
當時,
;
當
時,
. 故
.
(Ⅱ) .
當時,
,在
上有
,
遞增,符合題意;
令,則
,∴
或
在
上恒成立.∵二次函數
的對稱軸為
,且
∴或
或
或
或
. 綜上
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com