題目列表(包括答案和解析)
函數(shù)是定義在
上的奇函數(shù),且
。
(1)求實數(shù)a,b,并確定函數(shù)的解析式;
(2)判斷在(-1,1)上的單調(diào)性,并用定義證明你的結(jié)論;
(3)寫出的單調(diào)減區(qū)間,并判斷
有無最大值或最小值?如有,寫出最大值或最小值。(本小問不需要說明理由)
【解析】本試題主要考查了函數(shù)的解析式和奇偶性和單調(diào)性的綜合運(yùn)用。第一問中,利用函數(shù)是定義在
上的奇函數(shù),且
。
解得,
(2)中,利用單調(diào)性的定義,作差變形判定可得單調(diào)遞增函數(shù)。
(3)中,由2知,單調(diào)減區(qū)間為,并由此得到當(dāng),x=-1時,
,當(dāng)x=1時,
解:(1)是奇函數(shù),
。
即,
,
………………2分
,又
,
,
,
(2)任取,且
,
,………………6分
,
,
,
,
,
在(-1,1)上是增函數(shù)!8分
(3)單調(diào)減區(qū)間為…………………………………………10分
當(dāng),x=-1時,,當(dāng)x=1時,
。
已知函數(shù).(
)
(1)若在區(qū)間
上單調(diào)遞增,求實數(shù)
的取值范圍;
(2)若在區(qū)間上,函數(shù)
的圖象恒在曲線
下方,求
的取值范圍.
【解析】第一問中,首先利用在區(qū)間
上單調(diào)遞增,則
在區(qū)間
上恒成立,然后分離參數(shù)法得到
,進(jìn)而得到范圍;第二問中,在區(qū)間
上,函數(shù)
的圖象恒在曲線
下方等價于
在區(qū)間
上恒成立.然后求解得到。
解:(1)在區(qū)間
上單調(diào)遞增,
則在區(qū)間
上恒成立. …………3分
即,而當(dāng)
時,
,故
.
…………5分
所以.
…………6分
(2)令,定義域為
.
在區(qū)間上,函數(shù)
的圖象恒在曲線
下方等價于
在區(qū)間
上恒成立.
∵ …………9分
① 若,令
,得極值點
,
,
當(dāng),即
時,在(
,+∞)上有
,此時
在區(qū)間
上是增函數(shù),并且在該區(qū)間上有
,不合題意;
當(dāng),即
時,同理可知,
在區(qū)間
上遞增,
有,也不合題意;
…………11分
② 若,則有
,此時在區(qū)間
上恒有
,從而
在區(qū)間
上是減函數(shù);
要使在此區(qū)間上恒成立,只須滿足
,
由此求得的范圍是
. …………13分
綜合①②可知,當(dāng)時,函數(shù)
的圖象恒在直線
下方.
(本題滿分16分)第(1)小題滿分6分,第(2)小題滿分5分,第(3)小題滿分5分。
已知函數(shù)。
(1)當(dāng)時,畫出函數(shù)
的大致圖像,并寫出其單調(diào)遞增區(qū)間;
(2)若函數(shù)在
上是單調(diào)遞減函數(shù),求實數(shù)
的取值范圍;
(3)若不等式對
恒成立,求實數(shù)
的取值范圍.
![]() |
(本題滿分16分)第(1)小題滿分6分,第(2)小題滿分5分,第(3)小題滿分5分。
已知函數(shù)。
(1)當(dāng)時,畫出函數(shù)
的大致圖像,并寫出其單調(diào)遞增區(qū)間;
(2)若函數(shù)在
上是單調(diào)遞減函數(shù),求實數(shù)
的取值范圍;
(3)若不等式對
恒成立,求實數(shù)
的取值范圍.
![]() |
(本大題滿分18分)本大題共有3個小題,第1小題滿分4分,第2小題滿6分,第3小題滿8分.
已知函數(shù);
,
(1)當(dāng)為偶函數(shù)時,求
的值。
(2)當(dāng)時,
在
上是單調(diào)遞增函數(shù),求
的取值范圍。
(3)當(dāng)時,(其中
,
),若
,且函數(shù)
的圖像關(guān)于點
對稱,在
處取得最小值,試探討
應(yīng)該滿足的條件。
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com