題目列表(包括答案和解析)
數(shù)列首項
,前
項和
滿足等式
(常數(shù)
,
……)
(1)求證:為等比數(shù)列;
(2)設數(shù)列的公比為
,作數(shù)列
使
(
……),求數(shù)列
的通項公式.
(3)設,求數(shù)列
的前
項和
.
【解析】第一問利用由得
兩式相減得
故時,
從而又
即
,而
從而 故
第二問中,
又
故
為等比數(shù)列,通項公式為
第三問中,
兩邊同乘以
利用錯位相減法得到和。
(1)由得
兩式相減得
故時,
從而 ………………3分
又 即
,而
從而 故
對任意
,
為常數(shù),即
為等比數(shù)列………………5分
(2)
……………………7分
又故
為等比數(shù)列,通項公式為
………………9分
(3)
兩邊同乘以
………………11分
兩式相減得
已知曲線上動點
到定點
與定直線
的距離之比為常數(shù)
.
(1)求曲線的軌跡方程;
(2)若過點引曲線C的弦AB恰好被點
平分,求弦AB所在的直線方程;
(3)以曲線的左頂點
為圓心作圓
:
,設圓
與曲線
交于點
與點
,求
的最小值,并求此時圓
的方程.
【解析】第一問利用(1)過點作直線
的垂線,垂足為D.
代入坐標得到
第二問當斜率k不存在時,檢驗得不符合要求;
當直線l的斜率為k時,;,化簡得
第三問點N與點M關于X軸對稱,設,, 不妨設
.
由于點M在橢圓C上,所以.
由已知,則
,
由于,故當
時,
取得最小值為
.
計算得,,故
,又點
在圓
上,代入圓的方程得到
.
故圓T的方程為:
,
,
為常數(shù),離心率為
的雙曲線
:
上的動點
到兩焦點的距離之和的最小值為
,拋物線
:
的焦點與雙曲線
的一頂點重合。(Ⅰ)求拋物線
的方程;(Ⅱ)過直線
:
(
為負常數(shù))上任意一點
向拋物線
引兩條切線,切點分別為
、
,坐標原點
恒在以
為直徑的圓內(nèi),求實數(shù)
的取值范圍。
【解析】第一問中利用由已知易得雙曲線焦距為,離心率為
,則長軸長為2,故雙曲線的上頂點為
,所以拋物線
的方程
第二問中,為
,
,
,
故直線的方程為
,即
,
所以,同理可得:
借助于根與系數(shù)的關系得到即,
是方程
的兩個不同的根,所以
由已知易得,即
解:(Ⅰ)由已知易得雙曲線焦距為,離心率為
,則長軸長為2,故雙曲線的上頂點為
,所以拋物線
的方程
(Ⅱ)設為
,
,
,
故直線的方程為
,即
,
所以,同理可得:
,
即,
是方程
的兩個不同的根,所以
由已知易得,即
CA |
CB |
CM |
CA |
CB |
CO |
F1M |
F1A |
F1B |
F1O |
CA |
CB |
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com