題目列表(包括答案和解析)
數(shù)列首項(xiàng)
,前
項(xiàng)和
滿足等式
(常數(shù)
,
……)
(1)求證:為等比數(shù)列;
(2)設(shè)數(shù)列的公比為
,作數(shù)列
使
(
……),求數(shù)列
的通項(xiàng)公式.
(3)設(shè),求數(shù)列
的前
項(xiàng)和
.
【解析】第一問利用由得
兩式相減得
故時(shí),
從而又
即
,而
從而 故
第二問中,
又
故
為等比數(shù)列,通項(xiàng)公式為
第三問中,
兩邊同乘以
利用錯位相減法得到和。
(1)由得
兩式相減得
故時(shí),
從而 ………………3分
又 即
,而
從而 故
對任意
,
為常數(shù),即
為等比數(shù)列………………5分
(2)
……………………7分
又故
為等比數(shù)列,通項(xiàng)公式為
………………9分
(3)
兩邊同乘以
………………11分
兩式相減得
已知曲線上動點(diǎn)
到定點(diǎn)
與定直線
的距離之比為常數(shù)
.
(1)求曲線的軌跡方程;
(2)若過點(diǎn)引曲線C的弦AB恰好被點(diǎn)
平分,求弦AB所在的直線方程;
(3)以曲線的左頂點(diǎn)
為圓心作圓
:
,設(shè)圓
與曲線
交于點(diǎn)
與點(diǎn)
,求
的最小值,并求此時(shí)圓
的方程.
【解析】第一問利用(1)過點(diǎn)作直線
的垂線,垂足為D.
代入坐標(biāo)得到
第二問當(dāng)斜率k不存在時(shí),檢驗(yàn)得不符合要求;
當(dāng)直線l的斜率為k時(shí),;,化簡得
第三問點(diǎn)N與點(diǎn)M關(guān)于X軸對稱,設(shè),, 不妨設(shè)
.
由于點(diǎn)M在橢圓C上,所以.
由已知,則
,
由于,故當(dāng)
時(shí),
取得最小值為
.
計(jì)算得,,故
,又點(diǎn)
在圓
上,代入圓的方程得到
.
故圓T的方程為:
,
,
為常數(shù),離心率為
的雙曲線
:
上的動點(diǎn)
到兩焦點(diǎn)的距離之和的最小值為
,拋物線
:
的焦點(diǎn)與雙曲線
的一頂點(diǎn)重合。(Ⅰ)求拋物線
的方程;(Ⅱ)過直線
:
(
為負(fù)常數(shù))上任意一點(diǎn)
向拋物線
引兩條切線,切點(diǎn)分別為
、
,坐標(biāo)原點(diǎn)
恒在以
為直徑的圓內(nèi),求實(shí)數(shù)
的取值范圍。
【解析】第一問中利用由已知易得雙曲線焦距為,離心率為
,則長軸長為2,故雙曲線的上頂點(diǎn)為
,所以拋物線
的方程
第二問中,為
,
,
,
故直線的方程為
,即
,
所以,同理可得:
借助于根與系數(shù)的關(guān)系得到即,
是方程
的兩個不同的根,所以
由已知易得,即
解:(Ⅰ)由已知易得雙曲線焦距為,離心率為
,則長軸長為2,故雙曲線的上頂點(diǎn)為
,所以拋物線
的方程
(Ⅱ)設(shè)為
,
,
,
故直線的方程為
,即
,
所以,同理可得:
,
即,
是方程
的兩個不同的根,所以
由已知易得,即
CA |
CB |
CM |
CA |
CB |
CO |
F1M |
F1A |
F1B |
F1O |
CA |
CB |
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com