題目列表(包括答案和解析)
解:能否投中,那得看拋物線與籃圈所在直線是否有交點(diǎn)。因?yàn)楹瘮?shù)的零點(diǎn)是-2與4,籃圈所在直線x=5在4的右邊,拋物線又是開口向下的,所以投不中。
某城市出租汽車的起步價(jià)為10元,行駛路程不超出4km,則按10元的標(biāo)準(zhǔn)收租車費(fèi)若行駛路程超出4km,則按每超出lkm加收2元計(jì)費(fèi)(超出不足1km的部分按lkm計(jì)).從這個(gè)城市的民航機(jī)場(chǎng)到某賓館的路程為15km.某司機(jī)常駕車在機(jī)場(chǎng)與此賓館之間接送旅客,由于行車路線的不同以及途中停車時(shí)間要轉(zhuǎn)換成行車路程(這個(gè)城市規(guī)定,每停車5分鐘按lkm路程計(jì)費(fèi)),這個(gè)司機(jī)一次接送旅客的行車路程ξ是一個(gè)隨機(jī)變量,
(1)他收旅客的租車費(fèi)η是否也是一個(gè)隨機(jī)變量?如果是,找出租車費(fèi)η與行車路程ξ的關(guān)系式;
(2)已知某旅客實(shí)付租車費(fèi)38元,而出租汽車實(shí)際行駛了15km,問出租車在途中因故停車?yán)塾?jì)最多幾分鐘?這種情況下,停車?yán)塾?jì)時(shí)間是否也是一個(gè)隨機(jī)變量?
解析:本例主要是培養(yǎng)學(xué)生理解概念的程度,了解解決數(shù)學(xué)問題都需要算法
算法一:按照逐一相加的程序進(jìn)行.
第一步 計(jì)算1+2,得到3;
第二步 將第一步中的運(yùn)算結(jié)果3與3相加,得到6;
第三步 將第二步中的運(yùn)算結(jié)果6與4相加,得到10;
第四步 將第三步中的運(yùn)算結(jié)果10與5相加,得到15;
第五步 將第四步中的運(yùn)算結(jié)果15與6相加,得到21;
第六步 將第五步中的運(yùn)算結(jié)果21與7相加,得到28.
算法二:可以運(yùn)用公式1+2+3+…+n=直接計(jì)算.
第一步 取n=7;
第二步 計(jì)算;
第三步 輸出運(yùn)算結(jié)果.
已知三次函數(shù)f(x)=x(x-a)(x-b) 0<a<b
(1)當(dāng)f(x)取得極值時(shí)x=s和x=t(s<t),求證:o<s<a<t<b;
(2)求f(x)的單調(diào)區(qū)間.
已知:定義在區(qū)間[-,π]上的函數(shù)y=f(x)的圖像關(guān)于直線x=
對(duì)稱,當(dāng)x≥
時(shí),函數(shù)f(x)=sinx.
(1)求f(-),f(-
)的值;
(2)求y=f(x)的函數(shù)表達(dá)式(直接寫表達(dá)式只得2分);
(3)如果關(guān)于x的方程f(x)=a有解,那么將方程在a取某一確定值時(shí)所求得的所有解的和記為Ma.求Ma的所有可能取值及相對(duì)應(yīng)的a的取值范圍.
通過研究學(xué)生的學(xué)習(xí)行為,專家發(fā)現(xiàn),學(xué)生的注意力隨著老師講課時(shí)間的變化而變化,講課開始時(shí),學(xué)生的興趣激增;中間有一段時(shí)間,學(xué)生的興趣保持較理想的狀態(tài),隨后學(xué)生的注意力開始分散,設(shè)f(x)表示學(xué)生注意力隨時(shí)間t(分鐘)的變化規(guī)律(f(t)越大,表明學(xué)生注意力越集中),經(jīng)過實(shí)驗(yàn)分析得知:
f(t)=
(1)講課開始后多少分鐘,學(xué)生的注意力最集中?能持續(xù)多少分鐘?
(2)講課開始后5分鐘與講課后25分鐘比較,何時(shí)學(xué)生的注意力更集中?
(3)一道數(shù)學(xué)難題,需要講解24分鐘,并且要求學(xué)生的注意力至少達(dá)到180,那么經(jīng)過適當(dāng)安排,老師能否在學(xué)生達(dá)到所需的狀態(tài)下講授完這道題目?
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com