題目列表(包括答案和解析)
已知函數(shù).
(1)
(2)若在
上單調(diào)遞增,且在
上單調(diào)遞減,又滿足
求證:
(3)在(2)的條件下,若,試比較
的大小,并加以證明。
已知
(1)求函數(shù)在
上的最小值
(2)對一切的恒成立,求實數(shù)a的取值范圍
(3)證明對一切,都有
成立
【解析】第一問中利用
當(dāng)
時,
在
單調(diào)遞減,在
單調(diào)遞增
,當(dāng)
,即
時,
,
第二問中,,則
設(shè)
,
則,
單調(diào)遞增,
,
,
單調(diào)遞減,
,因為對一切
,
恒成立,
第三問中問題等價于證明,
,
由(1)可知,
的最小值為
,當(dāng)且僅當(dāng)x=
時取得
設(shè),
,則
,易得
。當(dāng)且僅當(dāng)x=1時取得.從而對一切
,都有
成立
解:(1)當(dāng)
時,
在
單調(diào)遞減,在
單調(diào)遞增
,當(dāng)
,即
時,
,
…………4分
(2),則
設(shè)
,
則,
單調(diào)遞增,
,
,
單調(diào)遞減,
,因為對一切
,
恒成立,
…………9分
(3)問題等價于證明,
,
由(1)可知,
的最小值為
,當(dāng)且僅當(dāng)x=
時取得
設(shè),
,則
,易得
。當(dāng)且僅當(dāng)x=1時取得.從而對一切
,都有
成立
已知定義在R上的單調(diào)遞增函數(shù)滿足
,且
。
(Ⅰ)判斷函數(shù)的奇偶性并證明之;
(Ⅱ)解關(guān)于的不等式:
;
(Ⅲ)設(shè)集合,
.
,若集合
有且僅有一個元素,求證:
。
已知定義在R上的單調(diào)遞增函數(shù)滿足
,且
。
(Ⅰ)判斷函數(shù)的奇偶性并證明之;
(Ⅱ)解關(guān)于的不等式:
;
(Ⅲ)設(shè)集合,
.
,若集合
有且僅有一個元素,求證:
。
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com