題目列表(包括答案和解析)
(本小題滿分14分)
已知函數(shù)。
(1)證明:
(2)若數(shù)列的通項(xiàng)公式為
,求數(shù)列
的前
項(xiàng)和
;w.w.w.k.s.5.u.c.o.m
(3)設(shè)數(shù)列滿足:
,設(shè)
,
若(2)中的滿足對任意不小于2的正整數(shù)
,
恒成立,
試求的最大值。
(本小題滿分14分)已知,點(diǎn)
在
軸上,點(diǎn)
在
軸的正半軸,點(diǎn)
在直線
上,且滿足
,
. w.w.w.k.s.5.u.c.o.m
(Ⅰ)當(dāng)點(diǎn)在
軸上移動(dòng)時(shí),求動(dòng)點(diǎn)
的軌跡
方程;
(本小題滿分14分)設(shè)函數(shù)
(1)求函數(shù)的單調(diào)區(qū)間;
(2)若當(dāng)時(shí),不等式
恒成立,求實(shí)數(shù)
的取值范圍;w.w.w.k.s.5.u.c.o.m
(本小題滿分14分)
已知,其中
是自然常數(shù),
(1)討論時(shí),
的單調(diào)性、極值;w.w.w.k.s.5.u.c.o.m
(2)求證:在(1)的條件下,;
(3)是否存在實(shí)數(shù),使
的最小值是3,若存在,求出
的值;若不存在,說明理由.
(本小題滿分14分)
設(shè)數(shù)列的前
項(xiàng)和為
,對任意的正整數(shù)
,都有
成立,記
。
(I)求數(shù)列的通項(xiàng)公式;
(II)記,設(shè)數(shù)列
的前
項(xiàng)和為
,求證:對任意正整數(shù)
都有
;
(III)設(shè)數(shù)列的前
項(xiàng)和為
。已知正實(shí)數(shù)
滿足:對任意正整數(shù)
恒成立,求
的最小值。
一、選擇題(本大題共8小題,每小題5分,共40分)
1.A 2.A 3.B 4.A 5.C 6.D 7.D 8.B
二、填空題(本大題共6小題,每小題5分,共30分)
9.x=-1 10.40 11.4 12.2, 13.
14.-1<m<1
注:兩個(gè)空的填空題第一個(gè)空填對得2分,第二個(gè)空填對得3分.
三、解答題(本大題共6小題,共80分)
15.(本小題滿分13分)
(Ⅰ)解:f(x)=cos2x-sin2x+2sinxcosx+1=
sin2x+cos2x+1
=2sin+1. ……………………………………………4分
因此f(x)的最小正周期為,由
+2k
≤2 x+
≤
+2 k
,k∈Z得
+k
≤x≤
+k
,k∈Z.
故f(x)的單調(diào)遞減區(qū)間為, k∈Z.……………8分
(Ⅱ)當(dāng)x∈時(shí),2x+
∈
,
則f(x)的最大值為3,最小值為0.………………………………………13分
16.(本小題滿分13分)
解:(Ⅰ)要得40分,8道選擇題必須全做對,在其余四道題中,有兩道題答對的概率為,有一道題答對的概率為
,還有一道題答對的概率為
,所以得40分的概率為
P=×
×
×
=
. ………………………………………………6分
(Ⅱ)依題意,該考生得分的集合是{20,25,30,35,40},得分為20表示只做對了四道題,其余各題都做錯(cuò),所求概率為
P1=×
×
×
=
;
同樣可求得得分為25分的概率為
P2=×
×
×
×
+
×
×
×
+
×
×
×
=
;
得分為30分的概率為P3=;
得分為35分的概率為P4=;
得分為40分的概率為P5=.……………………………………………12分
所以得分為25分或30分的可能性最大. …………………………………13分
17.(本小題滿分14分)
解法一:
(Ⅰ)在直三棱柱ABC-A1B
底面
ABC,BC1在底面上的射影為CB.
由AC=3,BC=4,AB=5,可得ACCB.
所以ACBC1. ……………………………4分
(Ⅱ)設(shè)BC1與CB1交于點(diǎn)O,
則O為BC1中點(diǎn).連結(jié)OD.
在△ABC1中,D,O分別為AB,
BC1的中點(diǎn),故OD為△ABC1的中位線,
∴OD∥AC1,又AC1中平面CDB1,
OD平面CDB1,
∴AC1∥平面CDB1. ………………………9分
(Ⅲ)過C作CEAB于E,連結(jié)C1E.
由CC1底面ABC可得C1E
AB.
故∠CEC1為二面角C1-AB-C的平面角.
在△ABC中,CE=,
在Rt△CC1E中,tan C1EC==
,
∴二面角C1-AB-C的大小為arctan.………………………………… 9分
解法二:
∵直三棱柱ABC-A1B
∴AC,BC,CC1兩兩垂直.如圖以C為坐標(biāo)原點(diǎn),建立空間直角坐標(biāo)系C-xyz,則C(0,0,0),A(3,0,0),C1(0,0,4),B(0,4,0),B1(0,4,4).
(Ⅰ)∵=(-3,0,0),
=(0,-4,4),
∴?
=0,故AC
BC1.
…………………………………………4分
(Ⅱ)同解法一 …………………………………………………………………9分
(Ⅲ)平面ABC的一個(gè)法向量為m=(0,0,1),
設(shè)平面C1AB的一個(gè)法向量為n=(x0,y0,z0),
=(-3,0,4),
=(-3,4,0).
由得
令x0=4,則z0=3,y0=3.
則n=(4,3,3).故cos>m,n>==
.
所求二面角的大小為arccos. ……………………………………14分
18.(本小題滿分13分)
解:(Ⅰ)當(dāng)m=1時(shí),f(x)=?x(x?1)2=?x3+2x3-x,得f(2)=-2由
f′(x)=?3x3+4x?1,得f′(2)2=?5. ……………………4分
所以,曲線y=?x(x?1)2在點(diǎn)(2,?2)處的切線方程是y+2=?5(x?2),整理得5x+y?8=0. …………………………………………6分
(Ⅱ)f(x)=?x(x?m)2=?x3+2mx2?m2x,
f ′(x)=?3 x 2+
令f ′(x)=0解得x=或x=m. ……………………………………10分
由于m<0,當(dāng)x變化時(shí),f ′(x)的取值情況如下表:
x
(-∞,m)
m
f ′(x)
―
0
+
0
―
因此函數(shù)f(x)的單調(diào)增區(qū)間是,且函數(shù)f(x)在x=m處取得 極小值f(m)=0. ………………………………………………………13分
19.(本小題滿分13分)
解:(Ⅰ)由橢圓定義知+
=1,將(1,1)代入得
b2=.故橢圓方程為
+
=1.…………………………………4分
因此c2=4-=
,離心率e=
. ………………………………6分
(Ⅱ)設(shè)C(xC,yC),D(xD,yD),由題意知,AC的傾斜角不為90°,
故設(shè)AC的方程為y=k(x-1)+1,聯(lián)立
消去y得(1+3k2)x
2-6k(k-1)x+3k2-6k-1=0
……………………………………………………………………………8分
由點(diǎn)A(1,1)在橢圓上,可知xC=.
因?yàn)橹本AC,AD的傾斜角互補(bǔ),
故AD的方程為y=-k(x-1)+1,同理可得xD =.
所以xC-xD=.
又yC=k (xC-1)+1,yD=-k (xD-1)+1,yC-yD=k (xC+xD)-2k=,
所以kCD==
,即直線CD的斜率為定值
.……………13分
20.(本小題滿分14分)
解:(Ⅰ)因?yàn)閿?shù)列{bn}是等差數(shù)列,故設(shè)公差為d,
則bn+1-bn=d對n∈N*恒成立.依題意bn=an,an=
.
由an>0,
所以=
=
是定值,從而數(shù)列{an}是等比數(shù)列.…5分
(Ⅱ)當(dāng)n=1時(shí),a1=S1=,當(dāng)n≥2時(shí),an=Sn-Sn-1=
,當(dāng)n=1時(shí)也適合此式,即數(shù)列{an}的通項(xiàng)公式是an
.……………………… 7分
由bn=an,數(shù)列{bn}的通項(xiàng)公式是bn=n.…………………………8分
所以Pn,Pn+1
,過這兩點(diǎn)的直線方程是y-n=-2n+1
,該直線與坐標(biāo)軸的交點(diǎn)是An
和Bn(0,n+2).
cn=×
=
.……………………………………11分
因?yàn)閏n-cn+1=-
=
=
>0.
即數(shù)列{cn}的各項(xiàng)依次單調(diào)遞減,所以要使cn≤t對n∈N*恒成立,只要c1≤t,又c1=,可得t的取值范圍是
. …………………13分
故實(shí)數(shù)t的取值范圍是. …………………………………14分
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com