題目列表(包括答案和解析)
(12分)某校舉行一次乒乓球比賽,在單打比賽中,甲、乙兩名同學(xué)進(jìn)入決賽,根據(jù)以往經(jīng)驗(yàn),單局比賽甲勝乙的概率為,本場(chǎng)比賽采用五局三勝制,即先勝三局者獲勝,比賽結(jié)束.設(shè)各局比賽相互間沒(méi)有影響.
(1)試求本場(chǎng)比賽中甲勝兩局最終乙獲勝的事件的概率;
(2)令為本場(chǎng)比賽的局?jǐn)?shù),求
的概率分布和數(shù)學(xué)期望.
2 |
3 |
1 |
3 |
n |
![]() |
k=0 |
k |
n |
P | k n |
一、選擇題 CAAD ABDAB CB
二、填空題 .
.
.
.
三、解答題
.
的周期為
,最大值為
.
由
得
,
又,
,
∴ 或
或
∴ 或
或
.
顯然事件
即表示乙以
獲勝,
∴
的所有取值為
.
∴的分布列為:
3
4
5
數(shù)學(xué)期望.
.
當(dāng)
在
中點(diǎn)時(shí),
平面
.
延長(zhǎng)
、
交于
,則
,
連結(jié)并延長(zhǎng)交
延長(zhǎng)線于
,
則,
.
在中,
為中位線,
,
又,
∴.
∵
中,
∴,即
又,
,
∴平面
∴
.
∴為平面
與平面
所成二面
角的平面角。
又,
∴所求二面角的大小為.
.
由題意知
的方程為
,設(shè)
,
.
聯(lián)立 得
.
∴.
由拋物線定義,
∴.拋物線方程
,
由題意知
的方程為
.設(shè)
,
則,
,
∴
.
由知
,
,
,
.
則
∴當(dāng)時(shí),
的最小值為
.
.
∵
,
∴.
∴
∴
即
∴s
時(shí),也成立
∴
,
∴
∴
∵
,
又
∴
.
,
∵在
上單調(diào),
∴或
在
上恒成立.
即或
恒成立.
或
在
上恒成立.
又,
∴或
.
由
得:
,
化簡(jiǎn)得
當(dāng)時(shí),
,
,
∴
又,
∴
當(dāng)時(shí),
,
綜上,實(shí)數(shù)的取值范圍是
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com