題目列表(包括答案和解析)
.(本小題滿分10分)選修4-1:幾何證明選講
已知ABC中,AB=AC, D是
ABC外接圓劣弧AC弧上的點(不與點A,C重合),延長BD至E。
(1)求證:AD的延長線平分CDE;
(2)若BAC=30°,
ABC中BC邊上的高為2+
,
求ABC外接圓的面積。
.(本小題滿分10分)選修4—4:坐標系與參數(shù)方程
在極坐標系中,曲線,過點A(5,α)(α為銳角且
)作平行于
的直線
,且
與曲線L分別交于B,C兩點。(1)以極點為原點,極軸為x軸的正半軸,取與極坐標相同單位長度,建立平面直角坐標系,寫出曲線L和直線
的普通方程;(2)求|BC|的長。
.(本小題滿分10分)選修4-5:不等式選講
設(shè)函數(shù).
(Ⅰ)求不等式的解集;
(Ⅱ)若,
恒成立,求實數(shù)
的取值范圍.
.(本小題滿分10分)
已知,求證:
.
一、選擇題 CAAD ABDAB CB
二、填空題 .
.
.
.
三、解答題
.
的周期為
,最大值為
.
由
得
,
又,
,
∴ 或
或
∴ 或
或
.
顯然事件
即表示乙以
獲勝,
∴
的所有取值為
.
∴的分布列為:
3
4
5
數(shù)學期望.
.
當
在
中點時,
平面
.
延長
、
交于
,則
,
連結(jié)并延長交
延長線于
,
則,
.
在中,
為中位線,
,
又,
∴.
∵
中,
∴,即
又,
,
∴平面
∴
.
∴為平面
與平面
所成二面
角的平面角。
又,
∴所求二面角的大小為.
.
由題意知
的方程為
,設(shè)
,
.
聯(lián)立 得
.
∴.
由拋物線定義,
∴.拋物線方程
,
由題意知
的方程為
.設(shè)
,
則,
,
∴
.
由知
,
,
,
.
則
∴當時,
的最小值為
.
.
∵
,
∴.
∴
∴
即
∴s
時,也成立
∴
,
∴
∴
∵
,
又
∴
.
,
∵在
上單調(diào),
∴或
在
上恒成立.
即或
恒成立.
或
在
上恒成立.
又,
∴或
.
由
得:
,
化簡得
當時,
,
,
∴
又,
∴
當時,
,
綜上,實數(shù)的取值范圍是
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com