題目列表(包括答案和解析)
設是數(shù)列
的前
項和,對于任意
總有
。
(I)求數(shù)列的通現(xiàn)公式
(Ⅱ)當。
設是數(shù)列
的前
項和,
,
.
⑴求的通項;
⑵設,求數(shù)列
的前
項和
.
設是數(shù)列
的前
項和,
,
.
⑴求的通項;
⑵設,求數(shù)列
的前
項和
.
設是數(shù)列
的前
項和,對任意
都有
成立, (其中
、
、
是常數(shù)).
(1)當,
,
時,求
;
(2)當,
,
時,
①若,
,求數(shù)列
的通項公式;
②設數(shù)列中任意(不同)兩項之和仍是該數(shù)列中的一項,則稱該數(shù)列是“
數(shù)列”.
如果,試問:是否存在數(shù)列
為“
數(shù)列”,使得對任意
,都有
,且
.若存在,求數(shù)列
的首項
的所
有取值構成的集合;若不存在,說明理由.
設是數(shù)列
的前
項和,
,
,
.
(1)求證:數(shù)列是等差數(shù)列,并
的通項;
(2)設,求數(shù)列
的前
項和
.
1.C 2.D 3.A 4.A 5.C 6.A 7.D 8.A 9.C 10.D 11.D12.B
13.2 14. 15.
16.①③④
17.
18.解:
⑴
.
⑵在上單調(diào)遞增,在
上單調(diào)遞減.
所以,當時,
;當
時,
.
故的值域為
.
19.解:⑴直線①,
過原點垂直于的直線方程為
②
解①②得,
∵橢圓中心O(0,0)關于直線的對稱點在橢圓C的右準線上,
∴,
…………………(分)
∵直線過橢圓焦點,∴該焦點坐標為(2,0),
∴,
故橢圓C的方程為 ③…………………12分)
20.點評:本小題考查二次函數(shù)、等差數(shù)列、數(shù)列求和、不等式等基礎知識和基本的運算技能,考查分析問題的能力和推理能力。
解:(Ⅰ)設這二次函數(shù)f(x)=ax2+bx (a≠0) ,則 f`(x)=2ax+b,由于f`(x)=6x-2,得
a=3 , b=-2, 所以 f(x)=3x2-2x.
又因為點均在函數(shù)
的圖像上,所以
=3n2-2n.
當n≥2時,an=Sn-Sn-1=(3n2-2n)-
=6n-5.
當n=1時,a1=S1=3×12-2=6×1-5,所以,an=6n-5 ()
(Ⅱ)由(Ⅰ)
得知=
=
,
故Tn==
=(1-
因此,要使(1-
)<
(
)成立的m,必須且僅須滿足
≤
,即m≥10,所以滿足要求的最小正整數(shù)m為10.
21.(1)
(2)由
令得,增區(qū)間為
和
,
減區(qū)間為
2
+
0
-
0
+
↑
↓
↑
由表可知:當時,
解得:
的取值范圍為
22.(1)
(2)
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com