題目列表(包括答案和解析)
,
,
為常數(shù),離心率為
的雙曲線
:
上的動點
到兩焦點的距離之和的最小值為
,拋物線
:
的焦點與雙曲線
的一頂點重合。(Ⅰ)求拋物線
的方程;(Ⅱ)過直線
:
(
為負常數(shù))上任意一點
向拋物線
引兩條切線,切點分別為
、
,坐標原點
恒在以
為直徑的圓內(nèi),求實數(shù)
的取值范圍。
【解析】第一問中利用由已知易得雙曲線焦距為,離心率為
,則長軸長為2,故雙曲線的上頂點為
,所以拋物線
的方程
第二問中,為
,
,
,
故直線的方程為
,即
,
所以,同理可得:
借助于根與系數(shù)的關(guān)系得到即,
是方程
的兩個不同的根,所以
由已知易得,即
解:(Ⅰ)由已知易得雙曲線焦距為,離心率為
,則長軸長為2,故雙曲線的上頂點為
,所以拋物線
的方程
(Ⅱ)設(shè)為
,
,
,
故直線的方程為
,即
,
所以,同理可得:
,
即,
是方程
的兩個不同的根,所以
由已知易得,即
已知為中心在原點焦點在
的橢圓
的左、右焦點,拋物線
以
為頂點,
為焦點,設(shè)
為橢圓與拋物線的一個交點,如果橢圓的離心率為
,且
,則
的值為( )
一、選擇題
|