8天堂资源在线,国产成人久久av免费高潮,国产精品亚洲综合色区韩国,国产欧美va天堂在线观看视频,xx色综合

(Ⅰ)證明:∥平面, 查看更多

 

題目列表(包括答案和解析)

平面內n條直線,其中任何兩條不平行,任何三條不共點.
(1)設這n條直線互相分割成f(n)條線段或射線,猜想f(n)的表達式并給出證明;
(2)求證:這n條直線把平面分成
n(n+1)2
+1
個區(qū)域.

查看答案和解析>>

平面直角坐標系中,O為坐標原點,已知兩點M(1,-3)、N(5,1),若點C滿足
OC
=t
OM
+(1-t)
ON
(t∈R),點C的軌跡與拋物線:y2=4x交于A、B兩點.
(Ⅰ)求證:
OA
OB
;
(Ⅱ)在x軸上是否存在一點P(m,0)(m∈R),使得過P點的直線交拋物線于D、E兩點,并以該弦DE為直徑的圓都過原點.若存在,請求出m的值及圓心的軌跡方程;若不存在,請說明理由.

查看答案和解析>>

平面ABDE⊥平面ABC,△ABC是等腰直角三角形,AC=BC=4,四邊形ABDE是直角梯形,BD∥AE,BD⊥BA,BD=
12
AE=2
,O、M分別為CE、AB的中點.
(I)求證:OD∥平面ABC;
(II)能否在EM上找一點N,使得ON⊥平面ABDE?若能,請指出點N的位置,并加以證明;若不能,請說明理由.

查看答案和解析>>

()(本小題滿分12分)

如圖,四棱錐S-ABCD 的底面是正方形,每條側棱的長都是地面邊長的倍,P為側棱SD上的點。   

(Ⅰ)求證:ACSD;

(Ⅱ)若SD平面PAC,求二面角P-AC-D的大小

(Ⅲ)在(Ⅱ)的條件下,側棱SC上是否存在一點E,使得BE∥平面PAC。若存在,求SE:EC的值;若不存在,試說明理由。

查看答案和解析>>

()選修4-1:幾何證明講

已知 ABC   中,AB=AC,  DABC外接圓劣弧上的點(不與點A,C重合),延長BD至E。

(1)       求證:AD的延長線平分CDE;

(2)       若BAC=30,ABC中BC邊上的高為2+,求ABC外接圓的面積。

查看答案和解析>>

一、選擇題

    <style id="h9wbk"></style>
      <sub id="h9wbk"></sub>
      <sub id="h9wbk"></sub>

      20080917

      二、填空題

      13.1    14.(-1,3)    15.5    16.②③④

      三、解答題

      17.解:(Ⅰ)

            ………………4分

        

        當   ……2分

      (Ⅱ)  ………3分

        又

               ………………3分

      18.解:(Ⅰ)乙在第3次獨立地射時(每次射擊相互獨立)才首次命中10環(huán)的概率為

        

      (Ⅱ)甲、乙兩名運動員各自獨立射擊1次,兩人中恰有一人命中10環(huán)的概率為

        

      19.解:(Ⅰ)以D為坐標原點,DA所在的直線為x軸、DC所在的直線為y軸、DP所在的直線為z軸,建立如圖所示的空間直角坐標系D-xyz.

        則A(1,0,0),B(1,1,0),C(0,1,0),

        P(0,0,1)

        

        

         (Ⅱ)

        

        

        、

        

        

        解法二:

        設平面BCE的法向量為

        由

                   ………………2分

        設平面FCE的法向量為

        由

        

             …………2分

      20.(Ⅰ)由題意,得

        

         (Ⅱ)①當

        

      ②當

        令

        

      21.解:(Ⅰ)設橢圓方程為

        由題意,得

      所求橢圓方程;  ……………5分

      (Ⅱ)設拋物線C的方程為.

        由.

        拋物線C的方程為

        

      ,設、,則有

      ,.

        

        代入直線

        

      22.解:(Ⅰ)

        

      (Ⅱ)記方程①:方程②:

        分別研究方程①和方程②的根的情況:

         (1)方程①有且僅有一個實數(shù)根方程①沒有實數(shù)根

         (2)方程②有且僅有兩個不相同的實數(shù)根,即方程有兩個不相同的非正實數(shù)根.

        

        方程②有且僅有一個不相同的實數(shù)根,即方程有且僅有一個蜚 正實數(shù)根.

        

        綜上可知:當方程有三個不相同的實數(shù)根時,

        當方程有且僅有兩個不相同的實數(shù)根時,

        符合題意的實數(shù)取值的集合為

       

      <sup id="h9wbk"><rt id="h9wbk"></rt></sup><style id="h9wbk"></style>
    1. <sub id="h9wbk"></sub>