題目列表(包括答案和解析)
已知是公差為d的等差數(shù)列,
是公比為q的等比數(shù)列
(Ⅰ)若 ,是否存在
,有
?請說明理由;
(Ⅱ)若(a、q為常數(shù),且aq
0)對任意m存在k,有
,試求a、q滿足的充要條件;
(Ⅲ)若試確定所有的p,使數(shù)列
中存在某個連續(xù)p項(xiàng)的和式數(shù)列中
的一項(xiàng),請證明.
【解析】第一問中,由得
,整理后,可得
、
,
為整數(shù)
不存在
、
,使等式成立。
(2)中當(dāng)時,則
即
,其中
是大于等于
的整數(shù)
反之當(dāng)時,其中
是大于等于
的整數(shù),則
,
顯然,其中
、
滿足的充要條件是
,其中
是大于等于
的整數(shù)
(3)中設(shè)當(dāng)
為偶數(shù)時,
式左邊為偶數(shù),右邊為奇數(shù),
當(dāng)為偶數(shù)時,
式不成立。由
式得
,整理
當(dāng)時,符合題意。當(dāng)
,
為奇數(shù)時,
結(jié)合二項(xiàng)式定理得到結(jié)論。
解(1)由得
,整理后,可得
、
,
為整數(shù)
不存在
、
,使等式成立。
(2)當(dāng)時,則
即
,其中
是大于等于
的整數(shù)反之當(dāng)
時,其中
是大于等于
的整數(shù),則
,
顯然,其中
、
滿足的充要條件是
,其中
是大于等于
的整數(shù)
(3)設(shè)當(dāng)
為偶數(shù)時,
式左邊為偶數(shù),右邊為奇數(shù),
當(dāng)為偶數(shù)時,
式不成立。由
式得
,整理
當(dāng)時,符合題意。當(dāng)
,
為奇數(shù)時,
由
,得
當(dāng)
為奇數(shù)時,此時,一定有
和
使上式一定成立。
當(dāng)
為奇數(shù)時,命題都成立
已知數(shù)列是各項(xiàng)均不為0的等差數(shù)列,公差為d,
為其前n項(xiàng)和,且滿足
,
.?dāng)?shù)列
滿足
,
,
為數(shù)列
的前n項(xiàng)和.
(1)求數(shù)列的通項(xiàng)公式
和數(shù)列
的前n項(xiàng)和
;
(2)若對任意的,不等式
恒成立,求實(shí)數(shù)
的取值范圍;
(3)是否存在正整數(shù),使得
成等比數(shù)列?若存在,求出所有
的值;若不存在,請說明理由.
【解析】第一問利用在中,令n=1,n=2,
得 即
解得,,
[
又時,
滿足
,
,
第二問,①當(dāng)n為偶數(shù)時,要使不等式恒成立,即需不等式
恒成立.
,等號在n=2時取得.
此時
需滿足
.
②當(dāng)n為奇數(shù)時,要使不等式恒成立,即需不等式
恒成立.
是隨n的增大而增大, n=1時
取得最小值-6.
此時
需滿足
.
第三問,
若成等比數(shù)列,則
,
即.
由,可得
,即
,
.
(1)(法一)在中,令n=1,n=2,
得 即
解得,,
[
又時,
滿足
,
,
.
(2)①當(dāng)n為偶數(shù)時,要使不等式恒成立,即需不等式
恒成立.
,等號在n=2時取得.
此時
需滿足
.
②當(dāng)n為奇數(shù)時,要使不等式恒成立,即需不等式
恒成立.
是隨n的增大而增大, n=1時
取得最小值-6.
此時
需滿足
.
綜合①、②可得的取值范圍是
.
(3),
若成等比數(shù)列,則
,
即.
由,可得
,即
,
.
又,且m>1,所以m=2,此時n=12.
因此,當(dāng)且僅當(dāng)m=2,
n=12時,數(shù)列中的
成等比數(shù)列
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com