8天堂资源在线,国产成人久久av免费高潮,国产精品亚洲综合色区韩国,国产欧美va天堂在线观看视频,xx色综合

如圖.是拋物線上的動(dòng)點(diǎn).點(diǎn)在軸上. 查看更多

 

題目列表(包括答案和解析)

(08年天津南開區(qū)質(zhì)檢一理)(14分)

如圖,是拋物線上的一點(diǎn),動(dòng)弦ME、MF分別交x軸于A、B兩點(diǎn),且|MA|=|MB|。

(1)若M為定點(diǎn),證明:直線EF的斜率為定值;

(2)若M為動(dòng)點(diǎn),且∠EMF=90°,求△EMF的重心G的軌跡方程。

查看答案和解析>>

(08年天津南開區(qū)質(zhì)檢一理)(14分)

如圖,是拋物線上的一點(diǎn),動(dòng)弦ME、MF分別交x軸于A、B兩點(diǎn),且|MA|=|MB|。

(1)若M為定點(diǎn),證明:直線EF的斜率為定值;

(2)若M為動(dòng)點(diǎn),且∠EMF=90°,求△EMF的重心G的軌跡方程。

查看答案和解析>>

如圖,是拋物線上的兩動(dòng)點(diǎn)(異于原點(diǎn)),且的角平分線垂直于軸,直線軸,軸分別相交于.

(1) 求實(shí)數(shù)的值,使得

 (2)若中心在原點(diǎn),焦點(diǎn)在軸上的橢圓經(jīng)過. 求橢圓焦距的最大值及此時(shí)的方程.

 

查看答案和解析>>

已知拋物線().拋物線上的點(diǎn)到焦點(diǎn)的距離為2

(1)求拋物線的方程和的值;

 
(2)如圖,是拋物線上的一點(diǎn),過作圓的兩條切線交軸于兩點(diǎn),若的面積為,求點(diǎn)坐標(biāo).

查看答案和解析>>

如圖,是拋物線上上的一點(diǎn),動(dòng)弦分別交軸于兩點(diǎn),且

為定點(diǎn),證明:直線的斜率為定值;

為動(dòng)點(diǎn),且,求的重心的軌跡方程.

                                                 

查看答案和解析>>

一、選擇題

<abbr id="d5fce"></abbr>

20080527

二、填空題  13.4 ;  14.(-∞,-2]∪[1,+∞); 15. 5  ;   16. ② ③

17.解:(1)由正弦定理得,…

   ,,因此!6分

(2)的面積,

,所以由余弦定理得

!12分

18.18.解:填湖面積   填湖及排水設(shè)備費(fèi)    水面經(jīng)濟(jì)收益   填湖造地后收益

        (畝)      (元)                       

(1)收益不小于支出的條件可以表示為,

所以!3分

顯然時(shí),此時(shí)所填面積的最大值為畝!7分

(2)設(shè)該地現(xiàn)在水面m畝,今年填湖造地y畝,

,…………9分

,所以

因此今年填湖造地面積最多只能占現(xiàn)有水面的!12分

19.(1)∵∠DFH就是二面角G-EF-D的平面角…2分

在Rt△HDF中,DF= PD=1,DH= AD=1   ………4分

∴∠DFH=45°,

即二面角G-EF-D的大小為45°.             …………6分

(2)當(dāng)點(diǎn)Q是線段PB的中點(diǎn)時(shí),有PQ⊥平面ADQ.…………7分

證明如下:
∵E是PC中點(diǎn),∴EQ∥BC,又AD∥BC,故EQ∥AD,從而A、D、E、Q四點(diǎn)共面
在Rt△PDC中,PD=DC,E為PC中點(diǎn)
∴PC⊥DE,又∵PD⊥平面ABCD              …………10分
∴AD⊥PC,又AD∩DE=D
∴PC⊥平面ADEQ,即PC⊥平面ADQ.          …………12分
解法二:(1)建立如圖所示空間直角坐標(biāo)系,設(shè)平面GEF的一個(gè)法向量為n=(x,y,z),則
  取n=(1,0,1)      …………4分
又平面EFD的法向量為m=(1,0,0)
∴cos<m,n> =                 …………6分
∴<m,n>=45°                            …………7分
(2)設(shè)=λ(0<λ<1)
則=+=(-2+2λ,2λ,2-2λ)       …………9分
∵AQ⊥PC ó ?=0  ó  2×2λ-2(2-2λ)=0
ó  λ=                                                …………11分
又AD⊥PC,∴PC⊥平面ADQ  ó λ=

ó  點(diǎn)Q是線段PB的中點(diǎn).                               …………12分
20。解: 設(shè),不妨設(shè)

直線的方程:,

化簡得 .又圓心的距離為1,

 ,           …5分

,

易知,上式化簡得,

同理有.         ………8分

所以,則

是拋物線上的點(diǎn),有,則

.                    ………10分

所以

當(dāng)時(shí),上式取等號(hào),此時(shí)

因此的最小值為8.                                    …12分

21.(Ⅰ)當(dāng).

              …………………3分

(II)     因?yàn)?sub>在(0,1]上是增函數(shù),

所以在(0,1]上恒成立,即在(0,1]上恒成立,

 令,………6分

在(0,1]上是單調(diào)增函數(shù),所以

所以.                                          …………………8分

(Ⅲ)①當(dāng)時(shí),由(II)知在(0,1]上是增函數(shù),

所以,解得,與矛盾.…………………10分

②當(dāng)時(shí),令,

當(dāng)時(shí),,是增函數(shù),

當(dāng)時(shí),,是減函數(shù).

所以,即

解得,

綜上,存在,使得當(dāng)時(shí),f(x)有最大值-6.………………12分

22.解:(Ⅰ),,

是以為首項(xiàng),為公比的等比數(shù)列.

. ………4分

(Ⅱ)由(Ⅰ)知,

原不等式成立. ………8分

(Ⅲ)由(Ⅱ)知,對任意的,有

. ………10分

, ………12分

原不等式成立.    ………14分