題目列表(包括答案和解析)
如圖,在四棱錐中,
⊥底面
,底面
為正方形,
,
,
分別是
,
的中點(diǎn).
(I)求證:平面
;
(II)求證:;
(III)設(shè)PD=AD=a, 求三棱錐B-EFC的體積.
【解析】第一問利用線面平行的判定定理,,得到
第二問中,利用,所以
又因?yàn)?img
src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012061921145879762728/SYS201206192116075476939219_ST.files/image018.png">,,從而得
第三問中,借助于等體積法來求解三棱錐B-EFC的體積.
(Ⅰ)證明: 分別是
的中點(diǎn),
,
. …4分
(Ⅱ)證明:四邊形
為正方形,
.
,
.
,
,
.
,
. ………8分
(Ⅲ)解:連接AC,DB相交于O,連接OF, 則OF⊥面ABCD,
∴
(12分)如圖,在四棱錐中,底面
是正方形,側(cè)棱
底面
是
的中點(diǎn),作
交
于點(diǎn)
。
(I)證明:平面
;
(Ⅱ)證明:平面
;
(Ⅲ)求二面角的大小。
如圖,在四棱錐中,底面
是正方形,
底面
,
, 點(diǎn)
是
的中點(diǎn),
,且交
于點(diǎn)
.
(I) 求證: 平面
;
(II) 求二面角的余弦值大小;
(III)求證:平面⊥平面
.
如圖,在四棱錐中,底面
是正方形,
底面
,
, 點(diǎn)
是
的中點(diǎn),
,且交
于點(diǎn)
.
(I) 求證: 平面
;
(II) 求二面角的余弦值大;
(III)求證:平面⊥平面
.
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com