題目列表(包括答案和解析)
已知橢圓的離心率
,長軸的左右端點分別為
,
.
(1)求橢圓的方程;
(2)設動直線與曲線
有且只有一個公共點
,且與直線
相交于點
.問在
軸上是否存在定點
,使得以
為直徑的圓恒過定點
,若存在,求出
點坐標;若不存在,說明理由.
已知橢圓的離心率
,長軸的左右端點分別為
,
.
(1)求橢圓的方程;
(2)設動直線與曲線
有且只有一個公共點
,且與直線
相交于點
.
求證:以為直徑的圓過定點
.
已知橢圓的離心率為
=
,橢圓
上的點
到兩焦點的距離之和為12,點A、B分別是橢圓
長軸的左、右端點,點F是橢圓的右焦點.點
在橢圓上,且位于
軸的上方,
.
(I)
求橢圓的方程;
(II)求點的坐標;
(III)
設是橢圓長軸AB上的一點,
到直線AP的距離等于
,求橢圓上的點到點
的距離
的最小值.
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com