題目列表(包括答案和解析)
已知函數(shù)f(x)=ax3+bx2+cx在x=±1處取得極值,且在x=0處的切線的斜率為-3.
(1)求f(x)的解析式;
(2)若過點A(2,m)可作曲線y=f(x)的三條切線,求實數(shù)m的取值范圍.
【解析】本試題主要考查了導數(shù)在研究函數(shù)中的運用。第一問,利用函數(shù)f(x)=ax3+bx2+cx在x=±1處取得極值,且在x=0處的切線的斜率為-3,得到c=-3 ∴a=1, f(x)=x3-3x
(2)中設切點為(x0,x03-3x0),因為過點A(2,m),所以∴m-(x03-3x0)=(3x02-3)(2-x0)分離參數(shù)∴m=-2x03+6x02-6
然后利用g(x)=-2x3+6x2-6函數(shù)求導數(shù),判定單調性,從而得到要是有三解,則需要滿足-6<m<2
解:(1)f′(x)=3ax2+2bx+c
依題意
又f′(0)=-3
∴c=-3 ∴a=1 ∴f(x)=x3-3x
(2)設切點為(x0,x03-3x0),
∵f′(x)=3x2-3,∴f′(x0)=3x02-3
∴切線方程為y-(x03-3x0)=(3x02-3)(x-x0)
又切線過點A(2,m)
∴m-(x03-3x0)=(3x02-3)(2-x0)
∴m=-2x03+6x02-6
令g(x)=-2x3+6x2-6
則g′(x)=-6x2+12x=-6x(x-2)
由g′(x)=0得x=0或x=2
∴g(x)在(-∞,0)單調遞減,(0,2)單調遞增,(2,+∞)單調遞減.
∴g(x)極小值=g(0)=-6,g(x)極大值=g(2)=2
畫出草圖知,當-6<m<2時,m=-2x3+6x2-6有三解,
所以m的取值范圍是(-6,2).
一、選擇題:1、A2、A3、B4、B5、C6、D7、B8、D9、D10、A
二、填空題:11、1000
12、 13、三條側棱
、
、
兩兩互相垂直的三棱錐
中,
,則此三棱錐的外接球半徑為
14、(1)8 。2)
三、解答題:
15、(1)∵, ∴
,
………(2分)
∴,( 4分)
,………(6分)
∴或
所求解集為 ………(8分)
(2)∵
∴
………(10分)
∴ ………(12分)
求的周期為
,
遞增區(qū)間
16、解:解析:由題意可知,這個幾何體是直三棱柱,且,
,
(1)連結,
。
由直三棱柱的性質得平面
,所以
,則
四邊形為矩形.
由矩形性質得,過
的中點
在中,由中位線性質,得
,
又平面
,
平面
,
所以平面
。 (6分)
(2)因為平面
,
平面
,所以
,
在正方形:中,
。
又因為,所以
平面
.
由,得
平面
. (14分)
17、解:(1)由題意知,
∴
由,可得
(6分)
(2)當時,∵
∴,兩式相減得
∴
為常數(shù),
∴,
,
,…,
成等比數(shù)列。
其中,∴
………(12分)
18、解:設二次函數(shù),則
,解得
∴
將代入上式:
而對于,由已知,得:
,解得
∴
將代入:
而4月份的實際產量為萬件,相比之下,1.35比1.3更接近1.37.
∴選用函數(shù)作模型函數(shù)較好.
19、(1) ………(2分)
(1)由題意;,解得
,
∴所求的解析式為 ………(6分)
(2)由(1)可得
令,得
或
, ………(8分)
∴當時,
,當
時,
,當
時,
因此,當
時,
有極大值
,………(8分)
當時,
有極小值
,………(10分)
∴函數(shù)的圖象大致如圖。
由圖可知:。………(14分)
20、解:(1)直線與
軸垂直時與拋物線交于一點,不滿足題意.
設直線的方程為
,代入
得,
設
、
、
則,且
,即
或
.
∴,
為
的中點.
∴
∴由
或
得
或
.由
在
軸右側得.
軌跡的方程為
.
(2)∵曲線的方程為
。
∴ ∴
,
,
且
∴又
,
,
∴,
∴,∴
∴的取值范圍為
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com