題目列表(包括答案和解析)
已知函數(shù)的最小值為0,其中
(Ⅰ)求的值;
(Ⅱ)若對任意的有
≤
成立,求實數(shù)
的最小值;
(Ⅲ)證明(
).
【解析】(1)解:
的定義域為
由,得
當x變化時,,
的變化情況如下表:
x |
|
|
|
|
- |
0 |
+ |
|
|
極小值 |
|
因此,在
處取得最小值,故由題意
,所以
(2)解:當時,取
,有
,故
時不合題意.當
時,令
,即
令,得
①當時,
,
在
上恒成立。因此
在
上單調(diào)遞減.從而對于任意的
,總有
,即
在
上恒成立,故
符合題意.
②當時,
,對于
,
,故
在
上單調(diào)遞增.因此當取
時,
,即
不成立.
故不合題意.
綜上,k的最小值為.
(3)證明:當n=1時,不等式左邊==右邊,所以不等式成立.
當時,
在(2)中取,得
,
從而
所以有
綜上,,
已知函數(shù),
.
(Ⅰ)若函數(shù)依次在
處取到極值.求
的取值范圍;
(Ⅱ)若存在實數(shù),使對任意的
,不等式
恒成立.求正整數(shù)
的最大值.
【解析】第一問中利用導數(shù)在在處取到極值點可知導數(shù)為零可以解得方程有三個不同的實數(shù)根來分析求解。
第二問中,利用存在實數(shù),使對任意的
,不等式
恒成立轉化為
,恒成立,分離參數(shù)法求解得到范圍。
解:(1)
①
(2)不等式 ,即
,即
.
轉化為存在實數(shù),使對任意的
,不等式
恒成立.
即不等式在
上恒成立.
即不等式在
上恒成立.
設,則.
設,則
,因為
,有
.
故在區(qū)間
上是減函數(shù)。又
故存在,使得
.
當時,有
,當
時,有
.
從而在區(qū)間
上遞增,在區(qū)間
上遞減.
又[來源:]
所以當時,恒有
;當
時,恒有
;
故使命題成立的正整數(shù)m的最大值為5
(1)當n=3時,求捕魚收益的期望值;
(2)試求n的值,使這次遠洋捕魚收益的期望值達到最大.
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com