題目列表(包括答案和解析)
已知函數(shù).(
)
(1)若在區(qū)間
上單調(diào)遞增,求實(shí)數(shù)
的取值范圍;
(2)若在區(qū)間上,函數(shù)
的圖象恒在曲線
下方,求
的取值范圍.
【解析】第一問中,首先利用在區(qū)間
上單調(diào)遞增,則
在區(qū)間
上恒成立,然后分離參數(shù)法得到
,進(jìn)而得到范圍;第二問中,在區(qū)間
上,函數(shù)
的圖象恒在曲線
下方等價(jià)于
在區(qū)間
上恒成立.然后求解得到。
解:(1)在區(qū)間
上單調(diào)遞增,
則在區(qū)間
上恒成立. …………3分
即,而當(dāng)
時(shí),
,故
.
…………5分
所以.
…………6分
(2)令,定義域?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012061918574873515193/SYS201206191859562664899842_ST.files/image016.png">.
在區(qū)間上,函數(shù)
的圖象恒在曲線
下方等價(jià)于
在區(qū)間
上恒成立.
∵ …………9分
① 若,令
,得極值點(diǎn)
,
,
當(dāng),即
時(shí),在(
,+∞)上有
,此時(shí)
在區(qū)間
上是增函數(shù),并且在該區(qū)間上有
,不合題意;
當(dāng),即
時(shí),同理可知,
在區(qū)間
上遞增,
有,也不合題意;
…………11分
② 若,則有
,此時(shí)在區(qū)間
上恒有
,從而
在區(qū)間
上是減函數(shù);
要使在此區(qū)間上恒成立,只須滿足
,
由此求得的范圍是
. …………13分
綜合①②可知,當(dāng)時(shí),函數(shù)
的圖象恒在直線
下方.
已知
(1)求函數(shù)在
上的最小值
(2)對(duì)一切的恒成立,求實(shí)數(shù)a的取值范圍
(3)證明對(duì)一切,都有
成立
【解析】第一問中利用
當(dāng)
時(shí),
在
單調(diào)遞減,在
單調(diào)遞增
,當(dāng)
,即
時(shí),
,
第二問中,,則
設(shè)
,
則,
單調(diào)遞增,
,
,
單調(diào)遞減,
,因?yàn)閷?duì)一切
,
恒成立,
第三問中問題等價(jià)于證明,
,
由(1)可知,
的最小值為
,當(dāng)且僅當(dāng)x=
時(shí)取得
設(shè),
,則
,易得
。當(dāng)且僅當(dāng)x=1時(shí)取得.從而對(duì)一切
,都有
成立
解:(1)當(dāng)
時(shí),
在
單調(diào)遞減,在
單調(diào)遞增
,當(dāng)
,即
時(shí),
,
…………4分
(2),則
設(shè)
,
則,
單調(diào)遞增,
,
,
單調(diào)遞減,
,因?yàn)閷?duì)一切
,
恒成立,
…………9分
(3)問題等價(jià)于證明,
,
由(1)可知,
的最小值為
,當(dāng)且僅當(dāng)x=
時(shí)取得
設(shè),
,則
,易得
。當(dāng)且僅當(dāng)x=1時(shí)取得.從而對(duì)一切
,都有
成立
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com