題目列表(包括答案和解析)
已知中心在原點(diǎn)O,焦點(diǎn)F1、F2在x軸上的橢圓E經(jīng)過點(diǎn)C(2,2),且拋物線的焦點(diǎn)為F1.
(Ⅰ)求橢圓E的方程;
(Ⅱ)垂直于OC的直線l與橢圓E交于A、B兩點(diǎn),當(dāng)以AB為直徑的圓P與y軸相切時,求直線l的方程和圓P的方程.
【解析】本試題主要考查了橢圓的方程的求解以及直線與橢圓的位置關(guān)系的運(yùn)用。第一問中,設(shè)出橢圓的方程,然后結(jié)合拋物線的焦點(diǎn)坐標(biāo)得到,又因為
,這樣可知得到
。第二問中設(shè)直線l的方程為y=-x+m與橢圓聯(lián)立方程組可以得到
,再利用
可以結(jié)合韋達(dá)定理求解得到m的值和圓p的方程。
解:(Ⅰ)設(shè)橢圓E的方程為
①………………………………1分
②………………2分
③ 由①、②、③得a2=12,b2=6…………3分
所以橢圓E的方程為…………………………4分
(Ⅱ)依題意,直線OC斜率為1,由此設(shè)直線l的方程為y=-x+m,……………5分
代入橢圓E方程,得…………………………6分
………………………7分
、
………………8分
………………………9分
……………………………10分
當(dāng)m=3時,直線l方程為y=-x+3,此時,x1 +x2=4,圓心為(2,1),半徑為2,
圓P的方程為(x-2)2+(y-1)2=4;………………………………11分
同理,當(dāng)m=-3時,直線l方程為y=-x-3,
圓P的方程為(x+2)2+(y+1)2=4
在平面直角坐標(biāo)系中,曲線
與坐標(biāo)軸的交點(diǎn)都在圓
上.
(1)求圓的方程;
(2)若圓與直線
交于
、
兩點(diǎn),且
,求
的值.
【解析】本試題主要是考查了直線與圓的位置關(guān)系的運(yùn)用。
(1)曲線與
軸的交點(diǎn)為(0,1),
與軸的交點(diǎn)為(3+2
,0),(3-2
,0) 故可設(shè)
的圓心為(3,t),則有32+(t-1)2=(2
)2+t2,解得t=1.
(2)因為圓與直線
交于
、
兩點(diǎn),且
。聯(lián)立方程組得到結(jié)論。
在△ABC中,內(nèi)角A、B、C所對邊的邊長分別是a、b、c,已知c=2,C=.
(Ⅰ)若△ABC的面積等于,求a、b;
(Ⅱ)若,求△ABC的面積.
【解析】第一問中利用余弦定理及已知條件得又因為△ABC的面積等于
,所以
,得
聯(lián)立方程,解方程組得
.
第二問中。由于即為即
.
當(dāng)時,
,
,
,
所以
當(dāng)
時,得
,由正弦定理得
,聯(lián)立方程組
,解得
,得到
。
解:(Ⅰ) (Ⅰ)由余弦定理及已知條件得,………1分
又因為△ABC的面積等于,所以
,得
,………1分
聯(lián)立方程,解方程組得.
……………2分
(Ⅱ)由題意得,
即.
…………2分
當(dāng)時,
,
,
,
……1分
所以 ………………1分
當(dāng)時,得
,由正弦定理得
,聯(lián)立方程組
,解得
,
;
所以
已知直線與雙曲線
,有如下信息:聯(lián)立方程組
消去
后得到方程
,分類討論:(1)當(dāng)
時,該方程恒有一解;(2)當(dāng)
時,
恒成立。在滿足所提供信息的前提下,雙曲線離心率的取值范圍是( )
A. B.
C.
D.
已知直線與雙曲線
,有如下信息:聯(lián)立方程組
消去
后得到方程
,分類討論:(1)當(dāng)
時,該方程恒有一解;(2)當(dāng)
時,
恒成立。在滿足所提供信息的前提下,雙曲線離心率的取值范圍是 ( )
A. B.
C.
D.
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com