題目列表(包括答案和解析)
在中,
,分別是角
所對邊的長,
,且
(1)求的面積;
(2)若,求角C.
【解析】第一問中,由又∵
∴
∴
的面積為
第二問中,∵a =7 ∴c=5由余弦定理得:得到b的值,然后又由余弦定理得:
又C為內(nèi)角 ∴
解:(1) ………………2分
又∵∴
……………………4分
∴的面積為
……………………6分
(2)∵a =7 ∴c=5 ……………………7分
由余弦定理得:
∴
……………………9分
又由余弦定理得:
又C為內(nèi)角 ∴
……………………12分
另解:由正弦定理得: ∴
又
∴
給出問題:已知滿足
,試判定
的形狀.某學(xué)生的解答如下:
解:(i)由余弦定理可得,
,
,
,
故是直角三角形.
(ii)設(shè)外接圓半徑為
.由正弦定理可得,原式等價(jià)于
,
故是等腰三角形.
綜上可知,是等腰直角三角形.
請問:該學(xué)生的解答是否正確?若正確,請?jiān)谙旅鏅M線中寫出解題過程中主要用到的思想方法;若不正確,請?jiān)谙旅鏅M線中寫出你認(rèn)為本題正確的結(jié)果. .
已知△ABC的三個(gè)內(nèi)角A、B、C所對的邊分別為a、b、c,向量
(Ⅰ)求角A的大;
(Ⅱ)若,試判斷b·c取得最大值時(shí)△ABC形狀.
【解析】本試題主要考查了解三角形的運(yùn)用。第一問中利用向量的數(shù)量積公式,且由
(2)問中利用余弦定理,以及
,可知
,并為等邊三角形。
解:(Ⅰ)
………………………………6分
(Ⅱ)
………………………………8分
……………10分
如圖,邊長為2的正方形ABCD,E是BC的中點(diǎn),沿AE,DE將折起,使得B與C重合于O.
(Ⅰ)設(shè)Q為AE的中點(diǎn),證明:QDAO;
(Ⅱ)求二面角O—AE—D的余弦值.
【解析】第一問中,利用線線垂直,得到線面垂直,然后利用性質(zhì)定理得到線線垂直。取AO中點(diǎn)M,連接MQ,DM,由題意可得:AOEO, DO
EO,
AO=DO=2.AODM
因?yàn)镼為AE的中點(diǎn),所以MQ//E0,MQAO
AO平面DMQ,AO
DQ
第二問中,作MNAE,垂足為N,連接DN
因?yàn)锳OEO, DO
EO,EO
平面AOD,所以EO
DM
,因?yàn)锳ODM ,DM
平面AOE
因?yàn)镸NAE,DN
AE,
DNM就是所求的DM=
,MN=
,DN=
,COS
DNM=
(1)取AO中點(diǎn)M,連接MQ,DM,由題意可得:AOEO, DO
EO,
AO=DO=2.AODM
因?yàn)镼為AE的中點(diǎn),所以MQ//E0,MQAO
AO平面DMQ,AO
DQ
(2)作MNAE,垂足為N,連接DN
因?yàn)锳OEO, DO
EO,EO
平面AOD,所以EO
DM
,因?yàn)锳ODM ,DM
平面AOE
因?yàn)镸NAE,DN
AE,
DNM就是所求的DM=
,MN=
,DN=
,COS
DNM=
二面角O-AE-D的平面角的余弦值為
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com